Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/metrics/regression_metrics.py
2023-06-19 00:49:18 +02:00

430 lines
13 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Regression metrics, e.g. MAE/MSE/etc."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.dtensor import utils as dtensor_utils
from keras.losses import logcosh
from keras.losses import mean_absolute_error
from keras.losses import mean_absolute_percentage_error
from keras.losses import mean_squared_error
from keras.losses import mean_squared_logarithmic_error
from keras.metrics import base_metric
from keras.utils import losses_utils
from keras.utils import metrics_utils
from keras.utils.tf_utils import is_tensor_or_variable
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.metrics.MeanRelativeError")
class MeanRelativeError(base_metric.Mean):
"""Computes the mean relative error by normalizing with the given values.
This metric creates two local variables, `total` and `count` that are used
to compute the mean relative error. This is weighted by `sample_weight`, and
it is ultimately returned as `mean_relative_error`: an idempotent operation
that simply divides `total` by `count`.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
Args:
normalizer: The normalizer values with same shape as predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.MeanRelativeError(normalizer=[1, 3, 2, 3])
>>> m.update_state([1, 3, 2, 3], [2, 4, 6, 8])
>>> # metric = mean(|y_pred - y_true| / normalizer)
>>> # = mean([1, 1, 4, 5] / [1, 3, 2, 3]) = mean([1, 1/3, 2, 5/3])
>>> # = 5/4 = 1.25
>>> m.result().numpy()
1.25
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanRelativeError(normalizer=[1, 3])])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, normalizer, name=None, dtype=None):
super().__init__(name=name, dtype=dtype)
normalizer = tf.cast(normalizer, self._dtype)
self.normalizer = normalizer
def update_state(self, y_true, y_pred, sample_weight=None):
"""Accumulates metric statistics.
Args:
y_true: The ground truth values.
y_pred: The predicted values.
sample_weight: Optional weighting of each example. Defaults to 1. Can
be a `Tensor` whose rank is either 0, or the same rank as `y_true`,
and must be broadcastable to `y_true`.
Returns:
Update op.
"""
y_true = tf.cast(y_true, self._dtype)
y_pred = tf.cast(y_pred, self._dtype)
[
y_pred,
y_true,
], sample_weight = metrics_utils.ragged_assert_compatible_and_get_flat_values( # noqa: E501
[y_pred, y_true], sample_weight
)
y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(
y_pred, y_true
)
y_pred, self.normalizer = losses_utils.remove_squeezable_dimensions(
y_pred, self.normalizer
)
y_pred.shape.assert_is_compatible_with(y_true.shape)
relative_errors = tf.math.divide_no_nan(
tf.abs(y_true - y_pred), self.normalizer
)
return super().update_state(
relative_errors, sample_weight=sample_weight
)
def get_config(self):
n = self.normalizer
config = {
"normalizer": backend.eval(n) if is_tensor_or_variable(n) else n
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export("keras.metrics.CosineSimilarity")
class CosineSimilarity(base_metric.MeanMetricWrapper):
"""Computes the cosine similarity between the labels and predictions.
`cosine similarity = (a . b) / ||a|| ||b||`
See: [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity).
This metric keeps the average cosine similarity between `predictions` and
`labels` over a stream of data.
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
axis: (Optional) Defaults to -1. The dimension along which the cosine
similarity is computed.
Standalone usage:
>>> # l2_norm(y_true) = [[0., 1.], [1./1.414, 1./1.414]]
>>> # l2_norm(y_pred) = [[1., 0.], [1./1.414, 1./1.414]]
>>> # l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]]
>>> # result = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1))
>>> # = ((0. + 0.) + (0.5 + 0.5)) / 2
>>> m = tf.keras.metrics.CosineSimilarity(axis=1)
>>> m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]])
>>> m.result().numpy()
0.49999997
>>> m.reset_state()
>>> m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]],
... sample_weight=[0.3, 0.7])
>>> m.result().numpy()
0.6999999
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.CosineSimilarity(axis=1)])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, name="cosine_similarity", dtype=None, axis=-1):
super().__init__(cosine_similarity, name, dtype=dtype, axis=axis)
@keras_export("keras.metrics.MeanAbsoluteError")
class MeanAbsoluteError(base_metric.MeanMetricWrapper):
"""Computes the mean absolute error between the labels and predictions.
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.MeanAbsoluteError()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
0.25
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.5
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanAbsoluteError()])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, name="mean_absolute_error", dtype=None):
super().__init__(mean_absolute_error, name, dtype=dtype)
@keras_export("keras.metrics.MeanAbsolutePercentageError")
class MeanAbsolutePercentageError(base_metric.MeanMetricWrapper):
"""Computes the mean absolute percentage error between `y_true` and
`y_pred`.
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.MeanAbsolutePercentageError()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
250000000.0
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
500000000.0
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, name="mean_absolute_percentage_error", dtype=None):
super().__init__(mean_absolute_percentage_error, name, dtype=dtype)
@keras_export("keras.metrics.MeanSquaredError")
class MeanSquaredError(base_metric.MeanMetricWrapper):
"""Computes the mean squared error between `y_true` and `y_pred`.
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.MeanSquaredError()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
0.25
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.5
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanSquaredError()])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, name="mean_squared_error", dtype=None):
super().__init__(mean_squared_error, name, dtype=dtype)
@keras_export("keras.metrics.MeanSquaredLogarithmicError")
class MeanSquaredLogarithmicError(base_metric.MeanMetricWrapper):
"""Computes the mean squared logarithmic error between `y_true` and
`y_pred`.
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.MeanSquaredLogarithmicError()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
0.12011322
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.24022643
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanSquaredLogarithmicError()])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, name="mean_squared_logarithmic_error", dtype=None):
super().__init__(mean_squared_logarithmic_error, name, dtype=dtype)
@keras_export("keras.metrics.RootMeanSquaredError")
class RootMeanSquaredError(base_metric.Mean):
"""Computes root mean squared error metric between `y_true` and `y_pred`.
Standalone usage:
>>> m = tf.keras.metrics.RootMeanSquaredError()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
0.5
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.70710677
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.RootMeanSquaredError()])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, name="root_mean_squared_error", dtype=None):
super().__init__(name, dtype=dtype)
def update_state(self, y_true, y_pred, sample_weight=None):
"""Accumulates root mean squared error statistics.
Args:
y_true: The ground truth values.
y_pred: The predicted values.
sample_weight: Optional weighting of each example. Defaults to 1. Can
be a `Tensor` whose rank is either 0, or the same rank as `y_true`,
and must be broadcastable to `y_true`.
Returns:
Update op.
"""
y_true = tf.cast(y_true, self._dtype)
y_pred = tf.cast(y_pred, self._dtype)
y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(
y_pred, y_true
)
error_sq = tf.math.squared_difference(y_pred, y_true)
return super().update_state(error_sq, sample_weight=sample_weight)
def result(self):
return tf.sqrt(tf.math.divide_no_nan(self.total, self.count))
@keras_export("keras.metrics.LogCoshError")
class LogCoshError(base_metric.MeanMetricWrapper):
"""Computes the logarithm of the hyperbolic cosine of the prediction error.
`logcosh = log((exp(x) + exp(-x))/2)`, where x is the error (y_pred -
y_true)
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.LogCoshError()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
0.10844523
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.21689045
Usage with `compile()` API:
```python
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.LogCoshError()])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, name="logcosh", dtype=None):
super().__init__(logcosh, name, dtype=dtype)
def cosine_similarity(y_true, y_pred, axis=-1):
"""Computes the cosine similarity between labels and predictions.
Args:
y_true: The ground truth values.
y_pred: The prediction values.
axis: (Optional) Defaults to -1. The dimension along which the cosine
similarity is computed.
Returns:
Cosine similarity value.
"""
y_true = tf.linalg.l2_normalize(y_true, axis=axis)
y_pred = tf.linalg.l2_normalize(y_pred, axis=axis)
return tf.reduce_sum(y_true * y_pred, axis=axis)