Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/optimizers/sgd.py
2023-06-19 00:49:18 +02:00

205 lines
6.5 KiB
Python

# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SGD optimizer implementation."""
import tensorflow.compat.v2 as tf
from keras.optimizers import optimizer
from keras.saving.object_registration import register_keras_serializable
# isort: off
from tensorflow.python.util.tf_export import keras_export
@register_keras_serializable()
@keras_export(
"keras.optimizers.experimental.SGD", "keras.optimizers.SGD", v1=[]
)
class SGD(optimizer.Optimizer):
r"""Gradient descent (with momentum) optimizer.
Update rule for parameter `w` with gradient `g` when `momentum` is 0:
```python
w = w - learning_rate * g
```
Update rule when `momentum` is larger than 0:
```python
velocity = momentum * velocity - learning_rate * g
w = w + velocity
```
When `nesterov=True`, this rule becomes:
```python
velocity = momentum * velocity - learning_rate * g
w = w + momentum * velocity - learning_rate * g
```
Args:
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001.
momentum: float hyperparameter >= 0 that accelerates gradient descent in
the relevant direction and dampens oscillations. Defaults to 0, i.e.,
vanilla gradient descent.
nesterov: boolean. Whether to apply Nesterov momentum.
Defaults to `False`.
{{base_optimizer_keyword_args}}
Usage:
>>> opt = tf.keras.optimizers.experimental.SGD(learning_rate=0.1)
>>> var = tf.Variable(1.0)
>>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
>>> opt.minimize(loss, [var])
>>> # Step is `- learning_rate * grad`
>>> var.numpy()
0.9
>>> opt = tf.keras.optimizers.experimental.SGD(0.1, momentum=0.9)
>>> var = tf.Variable(1.0)
>>> val0 = var.value()
>>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
>>> # First step is `- learning_rate * grad`
>>> opt.minimize(loss, [var])
>>> val1 = var.value()
>>> (val0 - val1).numpy()
0.1
>>> # On later steps, step-size increases because of momentum
>>> opt.minimize(loss, [var])
>>> val2 = var.value()
>>> (val1 - val2).numpy()
0.18
Reference:
- For `nesterov=True`, See [Sutskever et al., 2013](
http://proceedings.mlr.press/v28/sutskever13.pdf).
"""
def __init__(
self,
learning_rate=0.01,
momentum=0.0,
nesterov=False,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
jit_compile=True,
name="SGD",
**kwargs
):
super().__init__(
name=name,
weight_decay=weight_decay,
clipnorm=clipnorm,
clipvalue=clipvalue,
global_clipnorm=global_clipnorm,
use_ema=use_ema,
ema_momentum=ema_momentum,
ema_overwrite_frequency=ema_overwrite_frequency,
jit_compile=jit_compile,
**kwargs
)
self._learning_rate = self._build_learning_rate(learning_rate)
self.momentum = momentum
self.nesterov = nesterov
if isinstance(momentum, (int, float)) and (
momentum < 0 or momentum > 1
):
raise ValueError("`momentum` must be between [0, 1].")
def build(self, var_list):
"""Initialize optimizer variables.
SGD optimizer has one variable `momentums`, only set if `self.momentum`
is not 0.
Args:
var_list: list of model variables to build SGD variables on.
"""
super().build(var_list)
if hasattr(self, "_built") and self._built:
return
self.momentums = []
for var in var_list:
self.momentums.append(
self.add_variable_from_reference(
model_variable=var, variable_name="m"
)
)
self._built = True
def update_step(self, gradient, variable):
"""Update step given gradient and the associated model variable."""
lr = tf.cast(self.learning_rate, variable.dtype)
m = None
var_key = self._var_key(variable)
momentum = tf.cast(self.momentum, variable.dtype)
m = self.momentums[self._index_dict[var_key]]
# TODO(b/204321487): Add nesterov acceleration.
if isinstance(gradient, tf.IndexedSlices):
# Sparse gradients.
add_value = tf.IndexedSlices(
-gradient.values * lr, gradient.indices
)
if m is not None:
m.assign(m * momentum)
m.scatter_add(add_value)
if self.nesterov:
variable.scatter_add(add_value)
variable.assign_add(m * momentum)
else:
variable.assign_add(m)
else:
variable.scatter_add(add_value)
else:
# Dense gradients
if m is not None:
m.assign(-gradient * lr + m * momentum)
if self.nesterov:
variable.assign_add(-gradient * lr + m * momentum)
else:
variable.assign_add(m)
else:
variable.assign_add(-gradient * lr)
def get_config(self):
config = super().get_config()
config.update(
{
"learning_rate": self._serialize_hyperparameter(
self._learning_rate
),
"momentum": self.momentum,
"nesterov": self.nesterov,
}
)
return config
SGD.__doc__ = SGD.__doc__.replace(
"{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args
)