Intelegentny_Pszczelarz/.venv/Lib/site-packages/scipy/_lib/_finite_differences.py
2023-06-19 00:49:18 +02:00

146 lines
4.1 KiB
Python

from numpy import arange, newaxis, hstack, prod, array
def _central_diff_weights(Np, ndiv=1):
"""
Return weights for an Np-point central derivative.
Assumes equally-spaced function points.
If weights are in the vector w, then
derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)
Parameters
----------
Np : int
Number of points for the central derivative.
ndiv : int, optional
Number of divisions. Default is 1.
Returns
-------
w : ndarray
Weights for an Np-point central derivative. Its size is `Np`.
Notes
-----
Can be inaccurate for a large number of points.
Examples
--------
We can calculate a derivative value of a function.
>>> def f(x):
... return 2 * x**2 + 3
>>> x = 3.0 # derivative point
>>> h = 0.1 # differential step
>>> Np = 3 # point number for central derivative
>>> weights = _central_diff_weights(Np) # weights for first derivative
>>> vals = [f(x + (i - Np/2) * h) for i in range(Np)]
>>> sum(w * v for (w, v) in zip(weights, vals))/h
11.79999999999998
This value is close to the analytical solution:
f'(x) = 4x, so f'(3) = 12
References
----------
.. [1] https://en.wikipedia.org/wiki/Finite_difference
"""
if Np < ndiv + 1:
raise ValueError(
"Number of points must be at least the derivative order + 1."
)
if Np % 2 == 0:
raise ValueError("The number of points must be odd.")
from scipy import linalg
ho = Np >> 1
x = arange(-ho, ho + 1.0)
x = x[:, newaxis]
X = x**0.0
for k in range(1, Np):
X = hstack([X, x**k])
w = prod(arange(1, ndiv + 1), axis=0) * linalg.inv(X)[ndiv]
return w
def _derivative(func, x0, dx=1.0, n=1, args=(), order=3):
"""
Find the nth derivative of a function at a point.
Given a function, use a central difference formula with spacing `dx` to
compute the nth derivative at `x0`.
Parameters
----------
func : function
Input function.
x0 : float
The point at which the nth derivative is found.
dx : float, optional
Spacing.
n : int, optional
Order of the derivative. Default is 1.
args : tuple, optional
Arguments
order : int, optional
Number of points to use, must be odd.
Notes
-----
Decreasing the step size too small can result in round-off error.
Examples
--------
>>> def f(x):
... return x**3 + x**2
>>> _derivative(f, 1.0, dx=1e-6)
4.9999999999217337
"""
if order < n + 1:
raise ValueError(
"'order' (the number of points used to compute the derivative), "
"must be at least the derivative order 'n' + 1."
)
if order % 2 == 0:
raise ValueError(
"'order' (the number of points used to compute the derivative) "
"must be odd."
)
# pre-computed for n=1 and 2 and low-order for speed.
if n == 1:
if order == 3:
weights = array([-1, 0, 1]) / 2.0
elif order == 5:
weights = array([1, -8, 0, 8, -1]) / 12.0
elif order == 7:
weights = array([-1, 9, -45, 0, 45, -9, 1]) / 60.0
elif order == 9:
weights = array([3, -32, 168, -672, 0, 672, -168, 32, -3]) / 840.0
else:
weights = _central_diff_weights(order, 1)
elif n == 2:
if order == 3:
weights = array([1, -2.0, 1])
elif order == 5:
weights = array([-1, 16, -30, 16, -1]) / 12.0
elif order == 7:
weights = array([2, -27, 270, -490, 270, -27, 2]) / 180.0
elif order == 9:
weights = (
array([-9, 128, -1008, 8064, -14350, 8064, -1008, 128, -9])
/ 5040.0
)
else:
weights = _central_diff_weights(order, 2)
else:
weights = _central_diff_weights(order, n)
val = 0.0
ho = order >> 1
for k in range(order):
val += weights[k] * func(x0 + (k - ho) * dx, *args)
return val / prod((dx,) * n, axis=0)