82 lines
3.1 KiB
Cython
82 lines
3.1 KiB
Cython
# cython: language_level=3
|
|
|
|
cimport numpy as cnp
|
|
|
|
cnp.import_array()
|
|
|
|
|
|
# Fused types for y_true, y_pred, raw_prediction
|
|
ctypedef fused Y_DTYPE_C:
|
|
cnp.npy_float64
|
|
cnp.npy_float32
|
|
|
|
|
|
# Fused types for gradient and hessian
|
|
ctypedef fused G_DTYPE_C:
|
|
cnp.npy_float64
|
|
cnp.npy_float32
|
|
|
|
|
|
# Struct to return 2 doubles
|
|
ctypedef struct double_pair:
|
|
double val1
|
|
double val2
|
|
|
|
|
|
# C base class for loss functions
|
|
cdef class CyLossFunction:
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyHalfSquaredError(CyLossFunction):
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyAbsoluteError(CyLossFunction):
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyPinballLoss(CyLossFunction):
|
|
cdef readonly double quantile # readonly makes it accessible from Python
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyHalfPoissonLoss(CyLossFunction):
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyHalfGammaLoss(CyLossFunction):
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyHalfTweedieLoss(CyLossFunction):
|
|
cdef readonly double power # readonly makes it accessible from Python
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyHalfTweedieLossIdentity(CyLossFunction):
|
|
cdef readonly double power # readonly makes it accessible from Python
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
|
|
|
|
|
cdef class CyHalfBinomialLoss(CyLossFunction):
|
|
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
|
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
|
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|