Intelegentny_Pszczelarz/.venv/Lib/site-packages/tensorboard/uploader/uploader.py
2023-06-19 00:49:18 +02:00

1231 lines
46 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Uploads a TensorBoard logdir to TensorBoard.dev."""
import contextlib
import functools
import time
import grpc
from google.protobuf import message
from tensorboard.compat.proto import graph_pb2
from tensorboard.compat.proto import summary_pb2
from tensorboard.compat.proto import types_pb2
from tensorboard.uploader.proto import write_service_pb2
from tensorboard.uploader import logdir_loader
from tensorboard.uploader import upload_tracker
from tensorboard.uploader import util
from tensorboard.backend import process_graph
from tensorboard.backend.event_processing import directory_loader
from tensorboard.backend.event_processing import event_file_loader
from tensorboard.backend.event_processing import io_wrapper
from tensorboard.plugins.graph import metadata as graphs_metadata
from tensorboard.util import grpc_util
from tensorboard.util import tb_logging
from tensorboard.util import tensor_util
# Minimum length of a logdir polling cycle in seconds. Shorter cycles will
# sleep to avoid spinning over the logdir, which isn't great for disks and can
# be expensive for network file systems.
_MIN_LOGDIR_POLL_INTERVAL_SECS = 5
# Age in seconds of last write after which an event file is considered inactive.
# TODO(@nfelt): consolidate with TensorBoard --reload_multifile default logic.
_EVENT_FILE_INACTIVE_SECS = 4000
# Maximum length of a base-128 varint as used to encode a 64-bit value
# (without the "msb of last byte is bit 63" optimization, to be
# compatible with protobuf and golang varints).
_MAX_VARINT64_LENGTH_BYTES = 10
logger = tb_logging.get_logger()
class TensorBoardUploader:
"""Uploads a TensorBoard logdir to TensorBoard.dev."""
def __init__(
self,
writer_client,
logdir,
allowed_plugins,
upload_limits,
logdir_poll_rate_limiter=None,
rpc_rate_limiter=None,
tensor_rpc_rate_limiter=None,
blob_rpc_rate_limiter=None,
name=None,
description=None,
verbosity=None,
one_shot=None,
):
"""Constructs a TensorBoardUploader.
Args:
writer_client: a TensorBoardWriterService stub instance
logdir: path of the log directory to upload
allowed_plugins: collection of string plugin names; events will only
be uploaded if their time series's metadata specifies one of these
plugin names
upload_limits: instance of tensorboard.service.UploadLimits proto.
logdir_poll_rate_limiter: a `RateLimiter` to use to limit logdir
polling frequency, to avoid thrashing disks, especially on networked
file systems
rpc_rate_limiter: a `RateLimiter` to use to limit write RPC frequency.
Note this limit applies at the level of single RPCs in the Scalar
and Tensor case, but at the level of an entire blob upload in the
Blob case-- which may require a few preparatory RPCs and a stream
of chunks. Note the chunk stream is internally rate-limited by
backpressure from the server, so it is not a concern that we do not
explicitly rate-limit within the stream here.
name: String name to assign to the experiment.
description: String description to assign to the experiment.
verbosity: Level of verbosity, an integer. Supported value:
0 - No upload statistics is printed.
1 - Print upload statistics while uploading data (default).
one_shot: Once uploading starts, upload only the existing data in
the logdir and then return immediately, instead of the default
behavior of continuing to listen for new data in the logdir and
upload them when it appears.
"""
self._api = writer_client
self._logdir = logdir
self._allowed_plugins = frozenset(allowed_plugins)
self._upload_limits = upload_limits
self._name = name
self._description = description
self._verbosity = 1 if verbosity is None else verbosity
self._one_shot = False if one_shot is None else one_shot
self._request_sender = None
self._experiment_id = None
if logdir_poll_rate_limiter is None:
self._logdir_poll_rate_limiter = util.RateLimiter(
_MIN_LOGDIR_POLL_INTERVAL_SECS
)
else:
self._logdir_poll_rate_limiter = logdir_poll_rate_limiter
if rpc_rate_limiter is None:
self._rpc_rate_limiter = util.RateLimiter(
self._upload_limits.min_scalar_request_interval / 1000
)
else:
self._rpc_rate_limiter = rpc_rate_limiter
if tensor_rpc_rate_limiter is None:
self._tensor_rpc_rate_limiter = util.RateLimiter(
self._upload_limits.min_tensor_request_interval / 1000
)
else:
self._tensor_rpc_rate_limiter = tensor_rpc_rate_limiter
if blob_rpc_rate_limiter is None:
self._blob_rpc_rate_limiter = util.RateLimiter(
self._upload_limits.min_blob_request_interval / 1000
)
else:
self._blob_rpc_rate_limiter = blob_rpc_rate_limiter
active_filter = (
lambda secs: secs + _EVENT_FILE_INACTIVE_SECS >= time.time()
)
directory_loader_factory = functools.partial(
directory_loader.DirectoryLoader,
loader_factory=event_file_loader.TimestampedEventFileLoader,
path_filter=io_wrapper.IsTensorFlowEventsFile,
active_filter=active_filter,
)
self._logdir_loader = logdir_loader.LogdirLoader(
self._logdir, directory_loader_factory
)
self._tracker = upload_tracker.UploadTracker(
verbosity=self._verbosity, one_shot=self._one_shot
)
def has_data(self) -> bool:
"""Returns this object's upload tracker."""
return self._tracker.has_data()
@property
def experiment_id(self) -> str:
"""Returns the experiment_id associated with this uploader.
May be none if no experiment is set, for instance, if
`create_experiment` has not been called.
"""
return self._experiment_id
def create_experiment(self):
"""Creates an Experiment for this upload session and returns the ID."""
logger.info("Creating experiment")
request = write_service_pb2.CreateExperimentRequest(
name=self._name, description=self._description
)
response = grpc_util.call_with_retries(
self._api.CreateExperiment, request
)
self._request_sender = _BatchedRequestSender(
response.experiment_id,
self._api,
allowed_plugins=self._allowed_plugins,
upload_limits=self._upload_limits,
rpc_rate_limiter=self._rpc_rate_limiter,
tensor_rpc_rate_limiter=self._tensor_rpc_rate_limiter,
blob_rpc_rate_limiter=self._blob_rpc_rate_limiter,
tracker=self._tracker,
)
self._experiment_id = response.experiment_id
return response.experiment_id
def start_uploading(self):
"""Uploads data from the logdir.
This will continuously scan the logdir, uploading as data is added
unless the uploader was built with the _one_shot option, in which
case it will terminate after the first scan.
Raises:
RuntimeError: If `create_experiment` has not yet been called.
ExperimentNotFoundError: If the experiment is deleted during the
course of the upload.
"""
if self._request_sender is None:
raise RuntimeError(
"Must call create_experiment() before start_uploading()"
)
while True:
self._logdir_poll_rate_limiter.tick()
self._upload_once()
if self._one_shot:
break
def _upload_once(self):
"""Runs one upload cycle, sending zero or more RPCs."""
logger.info("Starting an upload cycle")
sync_start_time = time.time()
self._logdir_loader.synchronize_runs()
sync_duration_secs = time.time() - sync_start_time
logger.info("Logdir sync took %.3f seconds", sync_duration_secs)
run_to_events = self._logdir_loader.get_run_events()
with self._tracker.send_tracker():
self._request_sender.send_requests(run_to_events)
def update_experiment_metadata(
writer_client, experiment_id, name=None, description=None
):
"""Modifies user data associated with an experiment.
Args:
writer_client: a TensorBoardWriterService stub instance
experiment_id: string ID of the experiment to modify
name: If provided, modifies name of experiment to this value.
description: If provided, modifies the description of the experiment to
this value
Raises:
ExperimentNotFoundError: If no such experiment exists.
PermissionDeniedError: If the user is not authorized to modify this
experiment.
InvalidArgumentError: If the server rejected the name or description, if,
for instance, the size limits have changed on the server.
"""
logger.info("Modifying experiment %r", experiment_id)
request = write_service_pb2.UpdateExperimentRequest()
request.experiment.experiment_id = experiment_id
if name is not None:
logger.info("Setting exp %r name to %r", experiment_id, name)
request.experiment.name = name
request.experiment_mask.name = True
if description is not None:
logger.info(
"Setting exp %r description to %r", experiment_id, description
)
request.experiment.description = description
request.experiment_mask.description = True
try:
grpc_util.call_with_retries(writer_client.UpdateExperiment, request)
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
if e.code() == grpc.StatusCode.PERMISSION_DENIED:
raise PermissionDeniedError()
if e.code() == grpc.StatusCode.INVALID_ARGUMENT:
raise InvalidArgumentError(e.details())
raise
def delete_experiment(writer_client, experiment_id):
"""Permanently deletes an experiment and all of its contents.
Args:
writer_client: a TensorBoardWriterService stub instance
experiment_id: string ID of the experiment to delete
Raises:
ExperimentNotFoundError: If no such experiment exists.
PermissionDeniedError: If the user is not authorized to delete this
experiment.
RuntimeError: On unexpected failure.
"""
logger.info("Deleting experiment %r", experiment_id)
request = write_service_pb2.DeleteExperimentRequest()
request.experiment_id = experiment_id
try:
grpc_util.call_with_retries(writer_client.DeleteExperiment, request)
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
if e.code() == grpc.StatusCode.PERMISSION_DENIED:
raise PermissionDeniedError()
raise
class InvalidArgumentError(RuntimeError):
pass
class ExperimentNotFoundError(RuntimeError):
pass
class PermissionDeniedError(RuntimeError):
pass
class _OutOfSpaceError(Exception):
"""Action could not proceed without overflowing request budget.
This is a signaling exception (like `StopIteration`) used internally
by `_*RequestSender`; it does not mean that anything has gone wrong.
"""
pass
class _BatchedRequestSender:
"""Helper class for building requests that fit under a size limit.
This class maintains stateful request builders for each of the possible
request types (scalars, tensors, and blobs). These accumulate batches
independently, each maintaining its own byte budget and emitting a request
when the batch becomes full. As a consequence, events of different types
will likely be sent to the backend out of order. E.g., in the extreme case,
a single tensor-flavored request may be sent only when the event stream is
exhausted, even though many more recent scalar events were sent earlier.
This class is not threadsafe. Use external synchronization if
calling its methods concurrently.
"""
def __init__(
self,
experiment_id,
api,
allowed_plugins,
upload_limits,
rpc_rate_limiter,
tensor_rpc_rate_limiter,
blob_rpc_rate_limiter,
tracker,
):
# Map from `(run_name, tag_name)` to `SummaryMetadata` if the time
# series is a scalar time series, else to `_NON_SCALAR_TIME_SERIES`.
self._tag_metadata = {}
self._allowed_plugins = frozenset(allowed_plugins)
self._tracker = tracker
self._scalar_request_sender = _ScalarBatchedRequestSender(
experiment_id,
api,
rpc_rate_limiter,
upload_limits.max_scalar_request_size,
tracker=self._tracker,
)
self._tensor_request_sender = _TensorBatchedRequestSender(
experiment_id,
api,
tensor_rpc_rate_limiter,
upload_limits.max_tensor_request_size,
upload_limits.max_tensor_point_size,
tracker=self._tracker,
)
self._blob_request_sender = _BlobRequestSender(
experiment_id,
api,
blob_rpc_rate_limiter,
upload_limits.max_blob_request_size,
upload_limits.max_blob_size,
tracker=self._tracker,
)
self._tracker = tracker
def send_requests(self, run_to_events):
"""Accepts a stream of TF events and sends batched write RPCs.
Each sent request will be batched, the size of each batch depending on
the type of data (Scalar vs Tensor vs Blob) being sent.
Args:
run_to_events: Mapping from run name to generator of `tf.Event`
values, as returned by `LogdirLoader.get_run_events`.
Raises:
RuntimeError: If no progress can be made because even a single
point is too large (say, due to a gigabyte-long tag name).
"""
for (run_name, event, value) in self._run_values(run_to_events):
time_series_key = (run_name, value.tag)
# The metadata for a time series is memorized on the first event.
# If later events arrive with a mismatching plugin_name, they are
# ignored with a warning.
metadata = self._tag_metadata.get(time_series_key)
first_in_time_series = False
if metadata is None:
first_in_time_series = True
metadata = value.metadata
self._tag_metadata[time_series_key] = metadata
plugin_name = metadata.plugin_data.plugin_name
# TODO(cais): Call self._tracker.add_plugin_name() to track the
# data for what plugins have been uploaded.
if value.HasField("metadata") and (
plugin_name != value.metadata.plugin_data.plugin_name
):
logger.warning(
"Mismatching plugin names for %s. Expected %s, found %s.",
time_series_key,
metadata.plugin_data.plugin_name,
value.metadata.plugin_data.plugin_name,
)
continue
if plugin_name not in self._allowed_plugins:
if first_in_time_series:
logger.info(
"Skipping time series %r with unsupported plugin name %r",
time_series_key,
plugin_name,
)
continue
if metadata.data_class == summary_pb2.DATA_CLASS_SCALAR:
self._scalar_request_sender.add_event(
run_name, event, value, metadata
)
elif metadata.data_class == summary_pb2.DATA_CLASS_TENSOR:
self._tensor_request_sender.add_event(
run_name, event, value, metadata
)
elif metadata.data_class == summary_pb2.DATA_CLASS_BLOB_SEQUENCE:
self._blob_request_sender.add_event(
run_name, event, value, metadata
)
self._scalar_request_sender.flush()
self._tensor_request_sender.flush()
self._blob_request_sender.flush()
def _run_values(self, run_to_events):
"""Helper generator to create a single stream of work items.
Note that `dataclass_compat` may emit multiple variants of
the same event, for backwards compatibility. Thus this stream should
be filtered to obtain the desired version of each event. Here, we
ignore any event that does not have a `summary` field.
Furthermore, the events emitted here could contain values that do not
have `metadata.data_class` set; these too should be ignored. In
`_send_summary_value(...)` above, we switch on `metadata.data_class`
and drop any values with an unknown (i.e., absent or unrecognized)
`data_class`.
"""
# Note that this join in principle has deletion anomalies: if the input
# stream contains runs with no events, or events with no values, we'll
# lose that information. This is not a problem: we would need to prune
# such data from the request anyway.
for (run_name, events) in run_to_events.items():
for event in events:
_filter_graph_defs(event)
for value in event.summary.value:
yield (run_name, event, value)
class _ScalarBatchedRequestSender:
"""Helper class for building requests that fit under a size limit.
This class accumulates a current request. `add_event(...)` may or may not
send the request (and start a new one). After all `add_event(...)` calls
are complete, a final call to `flush()` is needed to send the final request.
This class is not threadsafe. Use external synchronization if calling its
methods concurrently.
"""
def __init__(
self,
experiment_id,
api,
rpc_rate_limiter,
max_request_size,
tracker,
):
if experiment_id is None:
raise ValueError("experiment_id cannot be None")
self._experiment_id = experiment_id
self._api = api
self._rpc_rate_limiter = rpc_rate_limiter
self._byte_budget_manager = _ByteBudgetManager(max_request_size)
self._tracker = tracker
self._runs = {} # cache: map from run name to `Run` proto in request
self._tags = (
{}
) # cache: map from `(run, tag)` to `Tag` proto in run in request
self._new_request()
def _new_request(self):
"""Allocates a new request and refreshes the budget."""
self._request = write_service_pb2.WriteScalarRequest()
self._runs.clear()
self._tags.clear()
self._num_values = 0
self._request.experiment_id = self._experiment_id
self._byte_budget_manager.reset(self._request)
def add_event(self, run_name, event, value, metadata):
"""Attempts to add the given event to the current request.
If the event cannot be added to the current request because the byte
budget is exhausted, the request is flushed, and the event is added
to the next request.
"""
try:
self._add_event_internal(run_name, event, value, metadata)
except _OutOfSpaceError:
self.flush()
# Try again. This attempt should never produce OutOfSpaceError
# because we just flushed.
try:
self._add_event_internal(run_name, event, value, metadata)
except _OutOfSpaceError:
raise RuntimeError("add_event failed despite flush")
def _add_event_internal(self, run_name, event, value, metadata):
run_proto = self._runs.get(run_name)
if run_proto is None:
run_proto = self._create_run(run_name)
self._runs[run_name] = run_proto
tag_proto = self._tags.get((run_name, value.tag))
if tag_proto is None:
tag_proto = self._create_tag(run_proto, value.tag, metadata)
self._tags[(run_name, value.tag)] = tag_proto
self._create_point(tag_proto, event, value)
self._num_values += 1
def flush(self):
"""Sends the active request after removing empty runs and tags.
Starts a new, empty active request.
"""
request = self._request
_prune_empty_tags_and_runs(request)
if not request.runs:
return
self._rpc_rate_limiter.tick()
with _request_logger(
request, request.runs
), self._tracker.scalars_tracker(self._num_values):
try:
# TODO(@nfelt): execute this RPC asynchronously.
grpc_util.call_with_retries(self._api.WriteScalar, request)
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
logger.error("Upload call failed with error %s", e)
self._new_request()
def _create_run(self, run_name):
"""Adds a run to the live request, if there's space.
Args:
run_name: String name of the run to add.
Returns:
The `WriteScalarRequest.Run` that was added to `request.runs`.
Raises:
_OutOfSpaceError: If adding the run would exceed the remaining
request budget.
"""
run_proto = self._request.runs.add(name=run_name)
self._byte_budget_manager.add_run(run_proto)
return run_proto
def _create_tag(self, run_proto, tag_name, metadata):
"""Adds a tag for the given value, if there's space.
Args:
run_proto: `WriteScalarRequest.Run` proto to which to add a tag.
tag_name: String name of the tag to add (as `value.tag`).
metadata: TensorBoard `SummaryMetadata` proto from the first
occurrence of this time series.
Returns:
The `WriteScalarRequest.Tag` that was added to `run_proto.tags`.
Raises:
_OutOfSpaceError: If adding the tag would exceed the remaining
request budget.
"""
tag_proto = run_proto.tags.add(name=tag_name)
tag_proto.metadata.CopyFrom(metadata)
self._byte_budget_manager.add_tag(tag_proto)
return tag_proto
def _create_point(self, tag_proto, event, value):
"""Adds a scalar point to the given tag, if there's space.
Args:
tag_proto: `WriteScalarRequest.Tag` proto to which to add a point.
event: Enclosing `Event` proto with the step and wall time data.
value: Scalar `Summary.Value` proto with the actual scalar data.
Raises:
_OutOfSpaceError: If adding the point would exceed the remaining
request budget.
"""
point = tag_proto.points.add()
point.step = event.step
# TODO(@nfelt): skip tensor roundtrip for Value with simple_value set
point.value = tensor_util.make_ndarray(value.tensor).item()
util.set_timestamp(point.wall_time, event.wall_time)
try:
self._byte_budget_manager.add_point(point)
except _OutOfSpaceError:
tag_proto.points.pop()
raise
class _TensorBatchedRequestSender:
"""Helper class for building WriteTensor() requests that fit under a size limit.
This class accumulates a current request. `add_event(...)` may or may not
send the request (and start a new one). After all `add_event(...)` calls
are complete, a final call to `flush()` is needed to send the final request.
This class is not threadsafe. Use external synchronization if calling its
methods concurrently.
"""
def __init__(
self,
experiment_id,
api,
rpc_rate_limiter,
max_request_size,
max_tensor_point_size,
tracker,
):
if experiment_id is None:
raise ValueError("experiment_id cannot be None")
self._experiment_id = experiment_id
self._api = api
self._rpc_rate_limiter = rpc_rate_limiter
self._byte_budget_manager = _ByteBudgetManager(max_request_size)
self._max_tensor_point_size = max_tensor_point_size
self._tracker = tracker
self._runs = {} # cache: map from run name to `Run` proto in request
self._tags = (
{}
) # cache: map from `(run, tag)` to `Tag` proto in run in request
self._new_request()
def _new_request(self):
"""Allocates a new request and refreshes the budget."""
self._request = write_service_pb2.WriteTensorRequest()
self._runs.clear()
self._tags.clear()
self._request.experiment_id = self._experiment_id
self._byte_budget_manager.reset(self._request)
self._num_values = 0
self._num_values_skipped = 0
self._tensor_bytes = 0
self._tensor_bytes_skipped = 0
def add_event(self, run_name, event, value, metadata):
"""Attempts to add the given event to the current request.
If the event cannot be added to the current request because the byte
budget is exhausted, the request is flushed, and the event is added
to the next request.
"""
try:
self._add_event_internal(run_name, event, value, metadata)
except _OutOfSpaceError:
self.flush()
# Try again. This attempt should never produce OutOfSpaceError
# because we just flushed.
try:
self._add_event_internal(run_name, event, value, metadata)
except _OutOfSpaceError:
raise RuntimeError("add_event failed despite flush")
def _add_event_internal(self, run_name, event, value, metadata):
run_proto = self._runs.get(run_name)
if run_proto is None:
run_proto = self._create_run(run_name)
self._runs[run_name] = run_proto
tag_proto = self._tags.get((run_name, value.tag))
if tag_proto is None:
tag_proto = self._create_tag(run_proto, value.tag, metadata)
self._tags[(run_name, value.tag)] = tag_proto
self._create_point(tag_proto, event, value, run_name)
self._num_values += 1
def flush(self):
"""Sends the active request after removing empty runs and tags.
Starts a new, empty active request.
"""
request = self._request
_prune_empty_tags_and_runs(request)
if not request.runs:
return
self._rpc_rate_limiter.tick()
with _request_logger(request, request.runs):
with self._tracker.tensors_tracker(
self._num_values,
self._num_values_skipped,
self._tensor_bytes,
self._tensor_bytes_skipped,
):
try:
grpc_util.call_with_retries(self._api.WriteTensor, request)
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
logger.error("Upload call failed with error %s", e)
self._new_request()
def _create_run(self, run_name):
"""Adds a run to the live request, if there's space.
Args:
run_name: String name of the run to add.
Returns:
The `WriteTensorRequest.Run` that was added to `request.runs`.
Raises:
_OutOfSpaceError: If adding the run would exceed the remaining
request budget.
"""
run_proto = self._request.runs.add(name=run_name)
self._byte_budget_manager.add_run(run_proto)
return run_proto
def _create_tag(self, run_proto, tag_name, metadata):
"""Adds a tag for the given value, if there's space.
Args:
run_proto: `WriteTensorRequest.Run` proto to which to add a tag.
tag_name: String name of the tag to add (as `value.tag`).
metadata: TensorBoard `SummaryMetadata` proto from the first
occurrence of this time series.
Returns:
The `WriteTensorRequest.Tag` that was added to `run_proto.tags`.
Raises:
_OutOfSpaceError: If adding the tag would exceed the remaining
request budget.
"""
tag_proto = run_proto.tags.add(name=tag_name)
tag_proto.metadata.CopyFrom(metadata)
self._byte_budget_manager.add_tag(tag_proto)
return tag_proto
def _create_point(self, tag_proto, event, value, run_name):
"""Adds a tensor point to the given tag, if there's space.
Args:
tag_proto: `WriteTensorRequest.Tag` proto to which to add a point.
event: Enclosing `Event` proto with the step and wall time data.
value: Tensor `Summary.Value` proto with the actual tensor data.
run_name: Name of the wrong, only used for error reporting.
Raises:
_OutOfSpaceError: If adding the point would exceed the remaining
request budget.
"""
point = tag_proto.points.add()
point.step = event.step
point.value.CopyFrom(value.tensor)
util.set_timestamp(point.wall_time, event.wall_time)
self._tensor_bytes += point.value.ByteSize()
if point.value.ByteSize() > self._max_tensor_point_size:
logger.warning(
"Tensor (run:%s, tag:%s, step: %d) too large; skipping. "
"Size %d exceeds limit of %d bytes.",
run_name,
tag_proto.name,
event.step,
point.value.ByteSize(),
self._max_tensor_point_size,
)
tag_proto.points.pop()
self._num_values_skipped += 1
self._tensor_bytes_skipped += point.value.ByteSize()
return
self._validate_tensor_value(
value.tensor, value.tag, event.step, event.wall_time
)
try:
self._byte_budget_manager.add_point(point)
except _OutOfSpaceError:
tag_proto.points.pop()
raise
def _validate_tensor_value(self, tensor_proto, tag, step, wall_time):
"""Validate a TensorProto by attempting to parse it."""
try:
tensor_util.make_ndarray(tensor_proto)
except ValueError as error:
raise ValueError(
"The uploader failed to upload a tensor. This seems to be "
"due to a malformation in the tensor, which may be caused by "
"a bug in the process that wrote the tensor.\n\n"
"The tensor has tag '%s' and is at step %d and wall_time %.6f.\n\n"
"Original error:\n%s" % (tag, step, wall_time, error)
)
class _ByteBudgetManager:
"""Helper class for managing the request byte budget for certain RPCs.
This should be used for RPCs that organize data by Runs, Tags, and Points,
specifically WriteScalar and WriteTensor.
Any call to add_run(), add_tag(), or add_point() may raise an
_OutOfSpaceError, which is non-fatal. It signals to the caller that they
should flush the current request and begin a new one.
For more information on the protocol buffer encoding and how byte cost
can be calculated, visit:
https://developers.google.com/protocol-buffers/docs/encoding
"""
def __init__(self, max_bytes):
# The remaining number of bytes that we may yet add to the request.
self._byte_budget = None # type: int
self._max_bytes = max_bytes
def reset(self, base_request):
"""Resets the byte budget and calculates the cost of the base request.
Args:
base_request: Base request.
Raises:
_OutOfSpaceError: If the size of the request exceeds the entire
request byte budget.
"""
self._byte_budget = self._max_bytes
self._byte_budget -= base_request.ByteSize()
if self._byte_budget < 0:
raise RuntimeError("Byte budget too small for base request")
def add_run(self, run_proto):
"""Integrates the cost of a run proto into the byte budget.
Args:
run_proto: The proto representing a run.
Raises:
_OutOfSpaceError: If adding the run would exceed the remaining request
budget.
"""
cost = (
# The size of the run proto without any tag fields set.
run_proto.ByteSize()
# The size of the varint that describes the length of the run
# proto. We can't yet know the final size of the run proto -- we
# haven't yet set any tag or point values -- so we can't know the
# final size of this length varint. We conservatively assume it is
# maximum size.
+ _MAX_VARINT64_LENGTH_BYTES
# The size of the proto key.
+ 1
)
if cost > self._byte_budget:
raise _OutOfSpaceError()
self._byte_budget -= cost
def add_tag(self, tag_proto):
"""Integrates the cost of a tag proto into the byte budget.
Args:
tag_proto: The proto representing a tag.
Raises:
_OutOfSpaceError: If adding the tag would exceed the remaining request
budget.
"""
cost = (
# The size of the tag proto without any tag fields set.
tag_proto.ByteSize()
# The size of the varint that describes the length of the tag
# proto. We can't yet know the final size of the tag proto -- we
# haven't yet set any point values -- so we can't know the final
# size of this length varint. We conservatively assume it is maximum
# size.
+ _MAX_VARINT64_LENGTH_BYTES
# The size of the proto key.
+ 1
)
if cost > self._byte_budget:
raise _OutOfSpaceError()
self._byte_budget -= cost
def add_point(self, point_proto):
"""Integrates the cost of a point proto into the byte budget.
Args:
point_proto: The proto representing a point.
Raises:
_OutOfSpaceError: If adding the point would exceed the remaining request
budget.
"""
submessage_cost = point_proto.ByteSize()
cost = (
# The size of the point proto.
submessage_cost
# The size of the varint that describes the length of the point
# proto.
+ _varint_cost(submessage_cost)
# The size of the proto key.
+ 1
)
if cost > self._byte_budget:
raise _OutOfSpaceError()
self._byte_budget -= cost
class _BlobRequestSender:
"""Uploader for blob-type event data.
Unlike the other types, this class does not accumulate events in batches;
every blob is sent individually and immediately. Nonetheless we retain
the `add_event()`/`flush()` structure for symmetry.
This class is not threadsafe. Use external synchronization if calling its
methods concurrently.
"""
def __init__(
self,
experiment_id,
api,
rpc_rate_limiter,
max_blob_request_size,
max_blob_size,
tracker,
):
if experiment_id is None:
raise ValueError("experiment_id cannot be None")
self._experiment_id = experiment_id
self._api = api
self._rpc_rate_limiter = rpc_rate_limiter
self._max_blob_request_size = max_blob_request_size
self._max_blob_size = max_blob_size
self._tracker = tracker
# Start in the empty state, just like self._new_request().
self._run_name = None
self._event = None
self._value = None
self._metadata = None
def _new_request(self):
"""Declares the previous event complete."""
self._run_name = None
self._event = None
self._value = None
self._metadata = None
def add_event(
self,
run_name,
event,
value,
metadata,
):
"""Attempts to add the given event to the current request.
If the event cannot be added to the current request because the byte
budget is exhausted, the request is flushed, and the event is added
to the next request.
"""
if self._value:
raise RuntimeError("Tried to send blob while another is pending")
self._run_name = run_name
self._event = event # provides step and possibly plugin_name
self._value = value
# TODO(soergel): should we really unpack the tensor here, or ship
# it wholesale and unpack server side, or something else?
# TODO(soergel): can we extract the proto fields directly instead?
self._blobs = tensor_util.make_ndarray(self._value.tensor)
if self._blobs.ndim == 1:
self._metadata = metadata
self.flush()
else:
logger.warning(
"A blob sequence must be represented as a rank-1 Tensor. "
"Provided data has rank %d, for run %s, tag %s, step %s ('%s' plugin) .",
self._blobs.ndim,
run_name,
self._value.tag,
self._event.step,
metadata.plugin_data.plugin_name,
)
# Skip this upload.
self._new_request()
def flush(self):
"""Sends the current blob sequence fully, and clears it to make way for the next."""
if self._value:
blob_sequence_id = self._get_or_create_blob_sequence()
logger.info(
"Sending %d blobs for sequence id: %s",
len(self._blobs),
blob_sequence_id,
)
sent_blobs = 0
for seq_index, blob in enumerate(self._blobs):
# Note the _send_blob() stream is internally flow-controlled.
# This rate limit applies to *starting* the stream.
self._rpc_rate_limiter.tick()
with self._tracker.blob_tracker(len(blob)) as blob_tracker:
sent_blobs += self._send_blob(
blob_sequence_id, seq_index, blob
)
blob_tracker.mark_uploaded(bool(sent_blobs))
logger.info(
"Sent %d of %d blobs for sequence id: %s",
sent_blobs,
len(self._blobs),
blob_sequence_id,
)
self._new_request()
def _get_or_create_blob_sequence(self):
request = write_service_pb2.GetOrCreateBlobSequenceRequest(
experiment_id=self._experiment_id,
run=self._run_name,
tag=self._value.tag,
step=self._event.step,
final_sequence_length=len(self._blobs),
metadata=self._metadata,
)
util.set_timestamp(request.wall_time, self._event.wall_time)
with _request_logger(request):
try:
# TODO(@nfelt): execute this RPC asynchronously.
response = grpc_util.call_with_retries(
self._api.GetOrCreateBlobSequence, request
)
blob_sequence_id = response.blob_sequence_id
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
logger.error("Upload call failed with error %s", e)
# TODO(soergel): clean up
raise
return blob_sequence_id
def _send_blob(self, blob_sequence_id, seq_index, blob):
"""Tries to send a single blob for a given index within a blob sequence.
The blob will not be sent if it was sent already, or if it is too large.
Returns:
The number of blobs successfully sent (i.e., 1 or 0).
"""
# TODO(soergel): retry and resume logic
if len(blob) > self._max_blob_size:
logger.warning(
"Blob too large; skipping. Size %d exceeds limit of %d bytes.",
len(blob),
self._max_blob_size,
)
return 0
request_iterator = self._write_blob_request_iterator(
blob_sequence_id, seq_index, blob
)
upload_start_time = time.time()
count = 0
# TODO(soergel): don't wait for responses for greater throughput
# See https://stackoverflow.com/questions/55029342/handling-async-streaming-request-in-grpc-python
try:
for response in self._api.WriteBlob(request_iterator):
count += 1
# TODO(soergel): validate responses? probably not.
pass
upload_duration_secs = time.time() - upload_start_time
logger.info(
"Upload for %d chunks totaling %d bytes took %.3f seconds (%.3f MB/sec)",
count,
len(blob),
upload_duration_secs,
len(blob) / upload_duration_secs / (1024 * 1024),
)
return 1
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.ALREADY_EXISTS:
logger.error("Attempted to re-upload existing blob. Skipping.")
return 0
else:
logger.info("WriteBlob RPC call got error %s", e)
raise
def _write_blob_request_iterator(self, blob_sequence_id, seq_index, blob):
# For now all use cases have the blob in memory already.
# In the future we may want to stream from disk; that will require
# refactoring here.
# TODO(soergel): compute crc32c's to allow server-side data validation.
for offset in range(0, len(blob), self._max_blob_request_size):
chunk = blob[offset : offset + self._max_blob_request_size]
finalize_object = offset + self._max_blob_request_size >= len(blob)
request = write_service_pb2.WriteBlobRequest(
blob_sequence_id=blob_sequence_id,
index=seq_index,
data=chunk,
offset=offset,
crc32c=None,
finalize_object=finalize_object,
final_crc32c=None,
blob_bytes=len(blob),
)
yield request
@contextlib.contextmanager
def _request_logger(request, runs=None):
upload_start_time = time.time()
request_bytes = request.ByteSize()
logger.info("Trying request of %d bytes", request_bytes)
yield
upload_duration_secs = time.time() - upload_start_time
if runs:
logger.info(
"Upload for %d runs (%d bytes) took %.3f seconds",
len(runs),
request_bytes,
upload_duration_secs,
)
else:
logger.info(
"Upload of (%d bytes) took %.3f seconds",
request_bytes,
upload_duration_secs,
)
def _varint_cost(n):
"""Computes the size of `n` encoded as an unsigned base-128 varint.
This should be consistent with the proto wire format:
<https://developers.google.com/protocol-buffers/docs/encoding#varints>
Args:
n: A non-negative integer.
Returns:
An integer number of bytes.
"""
result = 1
while n >= 128:
result += 1
n >>= 7
return result
def _prune_empty_tags_and_runs(request):
for (run_idx, run) in reversed(list(enumerate(request.runs))):
for (tag_idx, tag) in reversed(list(enumerate(run.tags))):
if not tag.points:
del run.tags[tag_idx]
if not run.tags:
del request.runs[run_idx]
def _filter_graph_defs(event):
for v in event.summary.value:
if v.metadata.plugin_data.plugin_name != graphs_metadata.PLUGIN_NAME:
continue
if v.tag == graphs_metadata.RUN_GRAPH_NAME:
data = list(v.tensor.string_val)
filtered_data = [_filtered_graph_bytes(x) for x in data]
filtered_data = [x for x in filtered_data if x is not None]
if filtered_data != data:
new_tensor = tensor_util.make_tensor_proto(
filtered_data, dtype=types_pb2.DT_STRING
)
v.tensor.CopyFrom(new_tensor)
def _filtered_graph_bytes(graph_bytes):
try:
graph_def = graph_pb2.GraphDef().FromString(graph_bytes)
# The reason for the RuntimeWarning catch here is b/27494216, whereby
# some proto parsers incorrectly raise that instead of DecodeError
# on certain kinds of malformed input. Triggering this seems to require
# a combination of mysterious circumstances.
except (message.DecodeError, RuntimeWarning):
logger.warning(
"Could not parse GraphDef of size %d. Skipping.",
len(graph_bytes),
)
return None
# Use the default filter parameters:
# limit_attr_size=1024, large_attrs_key="_too_large_attrs"
process_graph.prepare_graph_for_ui(graph_def)
return graph_def.SerializeToString()