Intelegentny_Pszczelarz/.venv/Lib/site-packages/tensorflow/lite/tools/visualize.py
2023-06-19 00:49:18 +02:00

550 lines
16 KiB
Python

#!/usr/bin/env python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This tool creates an html visualization of a TensorFlow Lite graph.
Example usage:
python visualize.py foo.tflite foo.html
"""
import json
import os
import re
import sys
import numpy as np
# pylint: disable=g-import-not-at-top
if not os.path.splitext(__file__)[0].endswith(
os.path.join("tflite_runtime", "visualize")):
# This file is part of tensorflow package.
from tensorflow.lite.python import schema_py_generated as schema_fb
else:
# This file is part of tflite_runtime package.
from tflite_runtime import schema_py_generated as schema_fb
# A CSS description for making the visualizer
_CSS = """
<html>
<head>
<style>
body {font-family: sans-serif; background-color: #fa0;}
table {background-color: #eca;}
th {background-color: black; color: white;}
h1 {
background-color: ffaa00;
padding:5px;
color: black;
}
svg {
margin: 10px;
border: 2px;
border-style: solid;
border-color: black;
background: white;
}
div {
border-radius: 5px;
background-color: #fec;
padding:5px;
margin:5px;
}
.tooltip {color: blue;}
.tooltip .tooltipcontent {
visibility: hidden;
color: black;
background-color: yellow;
padding: 5px;
border-radius: 4px;
position: absolute;
z-index: 1;
}
.tooltip:hover .tooltipcontent {
visibility: visible;
}
.edges line {
stroke: #333;
}
text {
font-weight: bold;
}
.nodes text {
color: black;
pointer-events: none;
font-family: sans-serif;
font-size: 11px;
}
</style>
<script src="https://d3js.org/d3.v4.min.js"></script>
</head>
<body>
"""
_D3_HTML_TEMPLATE = """
<script>
function buildGraph() {
// Build graph data
var graph = %s;
var svg = d3.select("#subgraph%d")
var width = svg.attr("width");
var height = svg.attr("height");
// Make the graph scrollable.
svg = svg.call(d3.zoom().on("zoom", function() {
svg.attr("transform", d3.event.transform);
})).append("g");
var color = d3.scaleOrdinal(d3.schemeDark2);
var simulation = d3.forceSimulation()
.force("link", d3.forceLink().id(function(d) {return d.id;}))
.force("charge", d3.forceManyBody())
.force("center", d3.forceCenter(0.5 * width, 0.5 * height));
var edge = svg.append("g").attr("class", "edges").selectAll("line")
.data(graph.edges).enter().append("path").attr("stroke","black").attr("fill","none")
// Make the node group
var node = svg.selectAll(".nodes")
.data(graph.nodes)
.enter().append("g")
.attr("x", function(d){return d.x})
.attr("y", function(d){return d.y})
.attr("transform", function(d) {
return "translate( " + d.x + ", " + d.y + ")"
})
.attr("class", "nodes")
.call(d3.drag()
.on("start", function(d) {
if(!d3.event.active) simulation.alphaTarget(1.0).restart();
d.fx = d.x;d.fy = d.y;
})
.on("drag", function(d) {
d.fx = d3.event.x; d.fy = d3.event.y;
})
.on("end", function(d) {
if (!d3.event.active) simulation.alphaTarget(0);
d.fx = d.fy = null;
}));
// Within the group, draw a box for the node position and text
// on the side.
var node_width = 150;
var node_height = 30;
node.append("rect")
.attr("r", "5px")
.attr("width", node_width)
.attr("height", node_height)
.attr("rx", function(d) { return d.group == 1 ? 1 : 10; })
.attr("stroke", "#000000")
.attr("fill", function(d) { return d.group == 1 ? "#dddddd" : "#000000"; })
node.append("text")
.text(function(d) { return d.name; })
.attr("x", 5)
.attr("y", 20)
.attr("fill", function(d) { return d.group == 1 ? "#000000" : "#eeeeee"; })
// Setup force parameters and update position callback
var node = svg.selectAll(".nodes")
.data(graph.nodes);
// Bind the links
var name_to_g = {}
node.each(function(data, index, nodes) {
console.log(data.id)
name_to_g[data.id] = this;
});
function proc(w, t) {
return parseInt(w.getAttribute(t));
}
edge.attr("d", function(d) {
function lerp(t, a, b) {
return (1.0-t) * a + t * b;
}
var x1 = proc(name_to_g[d.source],"x") + node_width /2;
var y1 = proc(name_to_g[d.source],"y") + node_height;
var x2 = proc(name_to_g[d.target],"x") + node_width /2;
var y2 = proc(name_to_g[d.target],"y");
var s = "M " + x1 + " " + y1
+ " C " + x1 + " " + lerp(.5, y1, y2)
+ " " + x2 + " " + lerp(.5, y1, y2)
+ " " + x2 + " " + y2
return s;
});
}
buildGraph()
</script>
"""
def TensorTypeToName(tensor_type):
"""Converts a numerical enum to a readable tensor type."""
for name, value in schema_fb.TensorType.__dict__.items():
if value == tensor_type:
return name
return None
def BuiltinCodeToName(code):
"""Converts a builtin op code enum to a readable name."""
for name, value in schema_fb.BuiltinOperator.__dict__.items():
if value == code:
return name
return None
def NameListToString(name_list):
"""Converts a list of integers to the equivalent ASCII string."""
if isinstance(name_list, str):
return name_list
else:
result = ""
if name_list is not None:
for val in name_list:
result = result + chr(int(val))
return result
class OpCodeMapper:
"""Maps an opcode index to an op name."""
def __init__(self, data):
self.code_to_name = {}
for idx, d in enumerate(data["operator_codes"]):
self.code_to_name[idx] = BuiltinCodeToName(d["builtin_code"])
if self.code_to_name[idx] == "CUSTOM":
self.code_to_name[idx] = NameListToString(d["custom_code"])
def __call__(self, x):
if x not in self.code_to_name:
s = "<UNKNOWN>"
else:
s = self.code_to_name[x]
return "%s (%d)" % (s, x)
class DataSizeMapper:
"""For buffers, report the number of bytes."""
def __call__(self, x):
if x is not None:
return "%d bytes" % len(x)
else:
return "--"
class TensorMapper:
"""Maps a list of tensor indices to a tooltip hoverable indicator of more."""
def __init__(self, subgraph_data):
self.data = subgraph_data
def __call__(self, x):
html = ""
if x is None:
return html
html += "<span class='tooltip'><span class='tooltipcontent'>"
for i in x:
tensor = self.data["tensors"][i]
html += str(i) + " "
html += NameListToString(tensor["name"]) + " "
html += TensorTypeToName(tensor["type"]) + " "
html += (repr(tensor["shape"]) if "shape" in tensor else "[]")
html += (repr(tensor["shape_signature"])
if "shape_signature" in tensor else "[]") + "<br>"
html += "</span>"
html += repr(x)
html += "</span>"
return html
def GenerateGraph(subgraph_idx, g, opcode_mapper):
"""Produces the HTML required to have a d3 visualization of the dag."""
def TensorName(idx):
return "t%d" % idx
def OpName(idx):
return "o%d" % idx
edges = []
nodes = []
first = {}
second = {}
pixel_mult = 200 # TODO(aselle): multiplier for initial placement
width_mult = 170 # TODO(aselle): multiplier for initial placement
for op_index, op in enumerate(g["operators"] or []):
if op["inputs"] is not None:
for tensor_input_position, tensor_index in enumerate(op["inputs"]):
if tensor_index not in first:
first[tensor_index] = ((op_index - 0.5 + 1) * pixel_mult,
(tensor_input_position + 1) * width_mult)
edges.append({
"source": TensorName(tensor_index),
"target": OpName(op_index)
})
if op["outputs"] is not None:
for tensor_output_position, tensor_index in enumerate(op["outputs"]):
if tensor_index not in second:
second[tensor_index] = ((op_index + 0.5 + 1) * pixel_mult,
(tensor_output_position + 1) * width_mult)
edges.append({
"target": TensorName(tensor_index),
"source": OpName(op_index)
})
nodes.append({
"id": OpName(op_index),
"name": opcode_mapper(op["opcode_index"]),
"group": 2,
"x": pixel_mult,
"y": (op_index + 1) * pixel_mult
})
for tensor_index, tensor in enumerate(g["tensors"]):
initial_y = (
first[tensor_index] if tensor_index in first else
second[tensor_index] if tensor_index in second else (0, 0))
nodes.append({
"id": TensorName(tensor_index),
"name": "%r (%d)" % (getattr(tensor, "shape", []), tensor_index),
"group": 1,
"x": initial_y[1],
"y": initial_y[0]
})
graph_str = json.dumps({"nodes": nodes, "edges": edges})
html = _D3_HTML_TEMPLATE % (graph_str, subgraph_idx)
return html
def GenerateTableHtml(items, keys_to_print, display_index=True):
"""Given a list of object values and keys to print, make an HTML table.
Args:
items: Items to print an array of dicts.
keys_to_print: (key, display_fn). `key` is a key in the object. i.e.
items[0][key] should exist. display_fn is the mapping function on display.
i.e. the displayed html cell will have the string returned by
`mapping_fn(items[0][key])`.
display_index: add a column which is the index of each row in `items`.
Returns:
An html table.
"""
html = ""
# Print the list of items
html += "<table><tr>\n"
html += "<tr>\n"
if display_index:
html += "<th>index</th>"
for h, mapper in keys_to_print:
html += "<th>%s</th>" % h
html += "</tr>\n"
for idx, tensor in enumerate(items):
html += "<tr>\n"
if display_index:
html += "<td>%d</td>" % idx
# print tensor.keys()
for h, mapper in keys_to_print:
val = tensor[h] if h in tensor else None
val = val if mapper is None else mapper(val)
html += "<td>%s</td>\n" % val
html += "</tr>\n"
html += "</table>\n"
return html
def CamelCaseToSnakeCase(camel_case_input):
"""Converts an identifier in CamelCase to snake_case."""
s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camel_case_input)
return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower()
def FlatbufferToDict(fb, preserve_as_numpy):
"""Converts a hierarchy of FB objects into a nested dict.
We avoid transforming big parts of the flat buffer into python arrays. This
speeds conversion from ten minutes to a few seconds on big graphs.
Args:
fb: a flat buffer structure. (i.e. ModelT)
preserve_as_numpy: true if all downstream np.arrays should be preserved.
false if all downstream np.array should become python arrays
Returns:
A dictionary representing the flatbuffer rather than a flatbuffer object.
"""
if isinstance(fb, int) or isinstance(fb, float) or isinstance(fb, str):
return fb
elif hasattr(fb, "__dict__"):
result = {}
for attribute_name in dir(fb):
attribute = fb.__getattribute__(attribute_name)
if not callable(attribute) and attribute_name[0] != "_":
snake_name = CamelCaseToSnakeCase(attribute_name)
preserve = True if attribute_name == "buffers" else preserve_as_numpy
result[snake_name] = FlatbufferToDict(attribute, preserve)
return result
elif isinstance(fb, np.ndarray):
return fb if preserve_as_numpy else fb.tolist()
elif hasattr(fb, "__len__"):
return [FlatbufferToDict(entry, preserve_as_numpy) for entry in fb]
else:
return fb
def CreateDictFromFlatbuffer(buffer_data):
model_obj = schema_fb.Model.GetRootAsModel(buffer_data, 0)
model = schema_fb.ModelT.InitFromObj(model_obj)
return FlatbufferToDict(model, preserve_as_numpy=False)
def create_html(tflite_input, input_is_filepath=True): # pylint: disable=invalid-name
"""Returns html description with the given tflite model.
Args:
tflite_input: TFLite flatbuffer model path or model object.
input_is_filepath: Tells if tflite_input is a model path or a model object.
Returns:
Dump of the given tflite model in HTML format.
Raises:
RuntimeError: If the input is not valid.
"""
# Convert the model into a JSON flatbuffer using flatc (build if doesn't
# exist.
if input_is_filepath:
if not os.path.exists(tflite_input):
raise RuntimeError("Invalid filename %r" % tflite_input)
if tflite_input.endswith(".tflite") or tflite_input.endswith(".bin"):
with open(tflite_input, "rb") as file_handle:
file_data = bytearray(file_handle.read())
data = CreateDictFromFlatbuffer(file_data)
elif tflite_input.endswith(".json"):
data = json.load(open(tflite_input))
else:
raise RuntimeError("Input file was not .tflite or .json")
else:
data = CreateDictFromFlatbuffer(tflite_input)
html = ""
html += _CSS
html += "<h1>TensorFlow Lite Model</h2>"
data["filename"] = tflite_input if input_is_filepath else (
"Null (used model object)") # Avoid special case
toplevel_stuff = [("filename", None), ("version", None),
("description", None)]
html += "<table>\n"
for key, mapping in toplevel_stuff:
if not mapping:
mapping = lambda x: x
html += "<tr><th>%s</th><td>%s</td></tr>\n" % (key, mapping(data.get(key)))
html += "</table>\n"
# Spec on what keys to display
buffer_keys_to_display = [("data", DataSizeMapper())]
operator_keys_to_display = [("builtin_code", BuiltinCodeToName),
("custom_code", NameListToString),
("version", None)]
# Update builtin code fields.
for d in data["operator_codes"]:
d["builtin_code"] = max(d["builtin_code"], d["deprecated_builtin_code"])
for subgraph_idx, g in enumerate(data["subgraphs"]):
# Subgraph local specs on what to display
html += "<div class='subgraph'>"
tensor_mapper = TensorMapper(g)
opcode_mapper = OpCodeMapper(data)
op_keys_to_display = [("inputs", tensor_mapper), ("outputs", tensor_mapper),
("builtin_options", None),
("opcode_index", opcode_mapper)]
tensor_keys_to_display = [("name", NameListToString),
("type", TensorTypeToName), ("shape", None),
("shape_signature", None), ("buffer", None),
("quantization", None)]
html += "<h2>Subgraph %d</h2>\n" % subgraph_idx
# Inputs and outputs.
html += "<h3>Inputs/Outputs</h3>\n"
html += GenerateTableHtml([{
"inputs": g["inputs"],
"outputs": g["outputs"]
}], [("inputs", tensor_mapper), ("outputs", tensor_mapper)],
display_index=False)
# Print the tensors.
html += "<h3>Tensors</h3>\n"
html += GenerateTableHtml(g["tensors"], tensor_keys_to_display)
# Print the ops.
if g["operators"]:
html += "<h3>Ops</h3>\n"
html += GenerateTableHtml(g["operators"], op_keys_to_display)
# Visual graph.
html += "<svg id='subgraph%d' width='1600' height='900'></svg>\n" % (
subgraph_idx,)
html += GenerateGraph(subgraph_idx, g, opcode_mapper)
html += "</div>"
# Buffers have no data, but maybe in the future they will
html += "<h2>Buffers</h2>\n"
html += GenerateTableHtml(data["buffers"], buffer_keys_to_display)
# Operator codes
html += "<h2>Operator Codes</h2>\n"
html += GenerateTableHtml(data["operator_codes"], operator_keys_to_display)
html += "</body></html>\n"
return html
def main(argv):
try:
tflite_input = argv[1]
html_output = argv[2]
except IndexError:
print("Usage: %s <input tflite> <output html>" % (argv[0]))
else:
html = create_html(tflite_input)
with open(html_output, "w") as output_file:
output_file.write(html)
if __name__ == "__main__":
main(sys.argv)