Intelegentny_Pszczelarz/.venv/Lib/site-packages/tensorflow/python/keras/optimizer_v2/rmsprop.py
2023-06-19 00:49:18 +02:00

300 lines
13 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RMSprop optimizer implementation."""
# pylint: disable=g-classes-have-attributes
import numpy as np
from tensorflow.python.framework import ops
from tensorflow.python.keras import backend_config
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.training import gen_training_ops
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.optimizers.RMSprop")
class RMSprop(optimizer_v2.OptimizerV2):
r"""Optimizer that implements the RMSprop algorithm.
The gist of RMSprop is to:
- Maintain a moving (discounted) average of the square of gradients
- Divide the gradient by the root of this average
This implementation of RMSprop uses plain momentum, not Nesterov momentum.
The centered version additionally maintains a moving average of the
gradients, and uses that average to estimate the variance.
Args:
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001.
rho: Discounting factor for the history/coming gradient. Defaults to 0.9.
momentum: A scalar or a scalar `Tensor`. Defaults to 0.0.
epsilon: A small constant for numerical stability. This epsilon is
"epsilon hat" in the Kingma and Ba paper (in the formula just before
Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to
1e-7.
centered: Boolean. If `True`, gradients are normalized by the estimated
variance of the gradient; if False, by the uncentered second moment.
Setting this to `True` may help with training, but is slightly more
expensive in terms of computation and memory. Defaults to `False`.
name: Optional name prefix for the operations created when applying
gradients. Defaults to `"RMSprop"`.
**kwargs: Keyword arguments. Allowed to be one of
`"clipnorm"` or `"clipvalue"`.
`"clipnorm"` (float) clips gradients by norm; `"clipvalue"` (float) clips
gradients by value.
Note that in the dense implementation of this algorithm, variables and their
corresponding accumulators (momentum, gradient moving average, square
gradient moving average) will be updated even if the gradient is zero
(i.e. accumulators will decay, momentum will be applied). The sparse
implementation (used when the gradient is an `IndexedSlices` object,
typically because of `tf.gather` or an embedding lookup in the forward pass)
will not update variable slices or their accumulators unless those slices
were used in the forward pass (nor is there an "eventual" correction to
account for these omitted updates). This leads to more efficient updates for
large embedding lookup tables (where most of the slices are not accessed in
a particular graph execution), but differs from the published algorithm.
Usage:
>>> opt = tf.keras.optimizers.RMSprop(learning_rate=0.1)
>>> var1 = tf.Variable(10.0)
>>> loss = lambda: (var1 ** 2) / 2.0 # d(loss) / d(var1) = var1
>>> step_count = opt.minimize(loss, [var1]).numpy()
>>> var1.numpy()
9.683772
Reference:
- [Hinton, 2012](
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
"""
_HAS_AGGREGATE_GRAD = True
def __init__(self,
learning_rate=0.001,
rho=0.9,
momentum=0.0,
epsilon=1e-7,
centered=False,
name="RMSprop",
**kwargs):
"""Construct a new RMSprop optimizer.
Args:
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001.
rho: Discounting factor for the history/coming gradient. Defaults to 0.9.
momentum: A scalar or a scalar `Tensor`. Defaults to 0.0.
epsilon: A small constant for numerical stability. This epsilon is
"epsilon hat" in the Kingma and Ba paper (in the formula just before
Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to
1e-7.
centered: Boolean. If `True`, gradients are normalized by the estimated
variance of the gradient; if False, by the uncentered second moment.
Setting this to `True` may help with training, but is slightly more
expensive in terms of computation and memory. Defaults to `False`.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "RMSprop".
**kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,
`decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip
gradients by value, `decay` is included for backward compatibility to
allow time inverse decay of learning rate. `lr` is included for backward
compatibility, recommended to use `learning_rate` instead.
@compatibility(eager)
When eager execution is enabled, `learning_rate`, `decay`, `momentum`, and
`epsilon` can each be a callable that takes no arguments and returns the
actual value to use. This can be useful for changing these values across
different invocations of optimizer functions.
@end_compatibility
"""
super(RMSprop, self).__init__(name, **kwargs)
self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
self._set_hyper("decay", self._initial_decay)
self._set_hyper("rho", rho)
self._momentum = False
if isinstance(momentum, ops.Tensor) or callable(momentum) or momentum > 0:
self._momentum = True
if isinstance(momentum, (int, float)) and (momentum < 0 or momentum > 1):
raise ValueError("`momentum` must be between [0, 1].")
self._set_hyper("momentum", momentum)
self.epsilon = epsilon or backend_config.epsilon()
self.centered = centered
def _create_slots(self, var_list):
for var in var_list:
self.add_slot(var, "rms")
if self._momentum:
for var in var_list:
self.add_slot(var, "momentum")
if self.centered:
for var in var_list:
self.add_slot(var, "mg")
def _prepare_local(self, var_device, var_dtype, apply_state):
super(RMSprop, self)._prepare_local(var_device, var_dtype, apply_state)
rho = array_ops.identity(self._get_hyper("rho", var_dtype))
apply_state[(var_device, var_dtype)].update(
dict(
neg_lr_t=-apply_state[(var_device, var_dtype)]["lr_t"],
epsilon=ops.convert_to_tensor_v2_with_dispatch(
self.epsilon, var_dtype),
rho=rho,
momentum=array_ops.identity(self._get_hyper("momentum", var_dtype)),
one_minus_rho=1. - rho))
def _resource_apply_dense(self, grad, var, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = ((apply_state or {}).get((var_device, var_dtype))
or self._fallback_apply_state(var_device, var_dtype))
rms = self.get_slot(var, "rms")
if self._momentum:
mom = self.get_slot(var, "momentum")
if self.centered:
mg = self.get_slot(var, "mg")
return gen_training_ops.ResourceApplyCenteredRMSProp(
var=var.handle,
mg=mg.handle,
ms=rms.handle,
mom=mom.handle,
lr=coefficients["lr_t"],
rho=coefficients["rho"],
momentum=coefficients["momentum"],
epsilon=coefficients["epsilon"],
grad=grad,
use_locking=self._use_locking)
else:
return gen_training_ops.ResourceApplyRMSProp(
var=var.handle,
ms=rms.handle,
mom=mom.handle,
lr=coefficients["lr_t"],
rho=coefficients["rho"],
momentum=coefficients["momentum"],
epsilon=coefficients["epsilon"],
grad=grad,
use_locking=self._use_locking)
else:
rms_t = (coefficients["rho"] * rms +
coefficients["one_minus_rho"] * math_ops.square(grad))
rms_t = state_ops.assign(rms, rms_t, use_locking=self._use_locking)
denom_t = rms_t
if self.centered:
mg = self.get_slot(var, "mg")
mg_t = coefficients["rho"] * mg + coefficients["one_minus_rho"] * grad
mg_t = state_ops.assign(mg, mg_t, use_locking=self._use_locking)
denom_t = rms_t - math_ops.square(mg_t)
var_t = var - coefficients["lr_t"] * grad / (
math_ops.sqrt(denom_t) + coefficients["epsilon"])
return state_ops.assign(var, var_t, use_locking=self._use_locking).op
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = ((apply_state or {}).get((var_device, var_dtype))
or self._fallback_apply_state(var_device, var_dtype))
rms = self.get_slot(var, "rms")
if self._momentum:
mom = self.get_slot(var, "momentum")
if self.centered:
mg = self.get_slot(var, "mg")
return gen_training_ops.ResourceSparseApplyCenteredRMSProp(
var=var.handle,
mg=mg.handle,
ms=rms.handle,
mom=mom.handle,
lr=coefficients["lr_t"],
rho=coefficients["rho"],
momentum=coefficients["momentum"],
epsilon=coefficients["epsilon"],
grad=grad,
indices=indices,
use_locking=self._use_locking)
else:
return gen_training_ops.ResourceSparseApplyRMSProp(
var=var.handle,
ms=rms.handle,
mom=mom.handle,
lr=coefficients["lr_t"],
rho=coefficients["rho"],
momentum=coefficients["momentum"],
epsilon=coefficients["epsilon"],
grad=grad,
indices=indices,
use_locking=self._use_locking)
else:
rms_scaled_g_values = (grad * grad) * coefficients["one_minus_rho"]
rms_t = state_ops.assign(rms, rms * coefficients["rho"],
use_locking=self._use_locking)
with ops.control_dependencies([rms_t]):
rms_t = self._resource_scatter_add(rms, indices, rms_scaled_g_values)
rms_slice = array_ops.gather(rms_t, indices)
denom_slice = rms_slice
if self.centered:
mg = self.get_slot(var, "mg")
mg_scaled_g_values = grad * coefficients["one_minus_rho"]
mg_t = state_ops.assign(mg, mg * coefficients["rho"],
use_locking=self._use_locking)
with ops.control_dependencies([mg_t]):
mg_t = self._resource_scatter_add(mg, indices, mg_scaled_g_values)
mg_slice = array_ops.gather(mg_t, indices)
denom_slice = rms_slice - math_ops.square(mg_slice)
var_update = self._resource_scatter_add(
var, indices, coefficients["neg_lr_t"] * grad / (
math_ops.sqrt(denom_slice) + coefficients["epsilon"]))
if self.centered:
return control_flow_ops.group(*[var_update, rms_t, mg_t])
return control_flow_ops.group(*[var_update, rms_t])
def set_weights(self, weights):
params = self.weights
# Override set_weights for backward compatibility of Keras V1 optimizer
# since it does not include iteration at head of the weight list. Set
# iteration to 0.
if len(params) == len(weights) + 1:
weights = [np.array(0)] + weights
super(RMSprop, self).set_weights(weights)
def get_config(self):
config = super(RMSprop, self).get_config()
config.update({
"learning_rate": self._serialize_hyperparameter("learning_rate"),
"decay": self._initial_decay,
"rho": self._serialize_hyperparameter("rho"),
"momentum": self._serialize_hyperparameter("momentum"),
"epsilon": self.epsilon,
"centered": self.centered,
})
return config
RMSProp = RMSprop