/// @ref gtc_ulp /// @file glm/gtc/ulp.inl /// /// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. /// /// Developed at SunPro, a Sun Microsystems, Inc. business. /// Permission to use, copy, modify, and distribute this /// software is freely granted, provided that this notice /// is preserved. #include "../detail/type_int.hpp" #include <cmath> #include <cfloat> #include <limits> #if(GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(push) # pragma warning(disable : 4127) #endif typedef union { float value; /* FIXME: Assumes 32 bit int. */ unsigned int word; } ieee_float_shape_type; typedef union { double value; struct { glm::detail::int32 lsw; glm::detail::int32 msw; } parts; } ieee_double_shape_type; #define GLM_EXTRACT_WORDS(ix0,ix1,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) #define GLM_GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) #define GLM_SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) #define GLM_INSERT_WORDS(d,ix0,ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (0) namespace glm{ namespace detail { GLM_FUNC_QUALIFIER float nextafterf(float x, float y) { volatile float t; glm::detail::int32 hx, hy, ix, iy; GLM_GET_FLOAT_WORD(hx, x); GLM_GET_FLOAT_WORD(hy, y); ix = hx&0x7fffffff; // |x| iy = hy&0x7fffffff; // |y| if((ix>0x7f800000) || // x is nan (iy>0x7f800000)) // y is nan return x+y; if(x==y) return y; // x=y, return y if(ix==0) { // x == 0 GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal t = x*x; if(t==x) return t; else return x; // raise underflow flag } if(hx>=0) { // x > 0 if(hx>hy) { // x > y, x -= ulp hx -= 1; } else { // x < y, x += ulp hx += 1; } } else { // x < 0 if(hy>=0||hx>hy){ // x < y, x -= ulp hx -= 1; } else { // x > y, x += ulp hx += 1; } } hy = hx&0x7f800000; if(hy>=0x7f800000) return x+x; // overflow if(hy<0x00800000) { // underflow t = x*x; if(t!=x) { // raise underflow flag GLM_SET_FLOAT_WORD(y,hx); return y; } } GLM_SET_FLOAT_WORD(x,hx); return x; } GLM_FUNC_QUALIFIER double nextafter(double x, double y) { volatile double t; glm::detail::int32 hx, hy, ix, iy; glm::detail::uint32 lx, ly; GLM_EXTRACT_WORDS(hx, lx, x); GLM_EXTRACT_WORDS(hy, ly, y); ix = hx & 0x7fffffff; // |x| iy = hy & 0x7fffffff; // |y| if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan return x+y; if(x==y) return y; // x=y, return y if((ix|lx)==0) { // x == 0 GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal t = x*x; if(t==x) return t; else return x; // raise underflow flag } if(hx>=0) { // x > 0 if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp if(lx==0) hx -= 1; lx -= 1; } else { // x < y, x += ulp lx += 1; if(lx==0) hx += 1; } } else { // x < 0 if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp if(lx==0) hx -= 1; lx -= 1; } else { // x > y, x += ulp lx += 1; if(lx==0) hx += 1; } } hy = hx&0x7ff00000; if(hy>=0x7ff00000) return x+x; // overflow if(hy<0x00100000) { // underflow t = x*x; if(t!=x) { // raise underflow flag GLM_INSERT_WORDS(y,hx,lx); return y; } } GLM_INSERT_WORDS(x,hx,lx); return x; } }//namespace detail }//namespace glm #if(GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(pop) #endif namespace glm { template <> GLM_FUNC_QUALIFIER float next_float(float const & x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<float>::max()); # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) return detail::nextafterf(x, FLT_MAX); # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) return __builtin_nextafterf(x, FLT_MAX); # else return nextafterf(x, FLT_MAX); # endif } template <> GLM_FUNC_QUALIFIER double next_float(double const & x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<double>::max()); # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) return detail::nextafter(x, std::numeric_limits<double>::max()); # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) return __builtin_nextafter(x, FLT_MAX); # else return nextafter(x, DBL_MAX); # endif } template<typename T, precision P, template<typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x) { vecType<T, P> Result(uninitialize); for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = next_float(x[i]); return Result; } GLM_FUNC_QUALIFIER float prev_float(float const & x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<float>::min()); # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) return detail::nextafterf(x, FLT_MIN); # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) return __builtin_nextafterf(x, FLT_MIN); # else return nextafterf(x, FLT_MIN); # endif } GLM_FUNC_QUALIFIER double prev_float(double const & x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<double>::min()); # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) return _nextafter(x, DBL_MIN); # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) return __builtin_nextafter(x, DBL_MIN); # else return nextafter(x, DBL_MIN); # endif } template<typename T, precision P, template<typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x) { vecType<T, P> Result(uninitialize); for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = prev_float(x[i]); return Result; } template <typename T> GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps) { T temp = x; for(uint i = 0; i < ulps; ++i) temp = next_float(temp); return temp; } template<typename T, precision P, template<typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) { vecType<T, P> Result(uninitialize); for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = next_float(x[i], ulps[i]); return Result; } template <typename T> GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps) { T temp = x; for(uint i = 0; i < ulps; ++i) temp = prev_float(temp); return temp; } template<typename T, precision P, template<typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) { vecType<T, P> Result(uninitialize); for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = prev_float(x[i], ulps[i]); return Result; } template <typename T> GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y) { uint ulp = 0; if(x < y) { T temp = x; while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max()) { ++ulp; temp = next_float(temp); } } else if(y < x) { T temp = y; while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max()) { ++ulp; temp = next_float(temp); } } else // == { } return ulp; } template<typename T, precision P, template<typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<uint, P> float_distance(vecType<T, P> const & x, vecType<T, P> const & y) { vecType<uint, P> Result(uninitialize); for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = float_distance(x[i], y[i]); return Result; } }//namespace glm