/// @ref core /// @file glm/detail/func_exponential.inl #include "func_vector_relational.hpp" #include "_vectorize.hpp" #include <limits> #include <cmath> #include <cassert> namespace glm{ namespace detail { # if GLM_HAS_CXX11_STL using std::log2; # else template <typename genType> genType log2(genType Value) { return std::log(Value) * static_cast<genType>(1.4426950408889634073599246810019); } # endif template <typename T, precision P, template <class, precision> class vecType, bool isFloat, bool Aligned> struct compute_log2 { GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & vec) { return detail::functor1<T, T, P, vecType>::call(log2, vec); } }; template <template <class, precision> class vecType, typename T, precision P, bool Aligned> struct compute_sqrt { GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) { return detail::functor1<T, T, P, vecType>::call(std::sqrt, x); } }; template <template <class, precision> class vecType, typename T, precision P, bool Aligned> struct compute_inversesqrt { GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) { return static_cast<T>(1) / sqrt(x); } }; template <template <class, precision> class vecType, bool Aligned> struct compute_inversesqrt<vecType, float, lowp, Aligned> { GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & x) { vecType<float, lowp> tmp(x); vecType<float, lowp> xhalf(tmp * 0.5f); vecType<uint, lowp>* p = reinterpret_cast<vecType<uint, lowp>*>(const_cast<vecType<float, lowp>*>(&x)); vecType<uint, lowp> i = vecType<uint, lowp>(0x5f375a86) - (*p >> vecType<uint, lowp>(1)); vecType<float, lowp>* ptmp = reinterpret_cast<vecType<float, lowp>*>(&i); tmp = *ptmp; tmp = tmp * (1.5f - xhalf * tmp * tmp); return tmp; } }; }//namespace detail // pow using std::pow; template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> pow(vecType<T, P> const & base, vecType<T, P> const & exponent) { return detail::functor2<T, P, vecType>::call(pow, base, exponent); } // exp using std::exp; template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> exp(vecType<T, P> const & x) { return detail::functor1<T, T, P, vecType>::call(exp, x); } // log using std::log; template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> log(vecType<T, P> const & x) { return detail::functor1<T, T, P, vecType>::call(log, x); } //exp2, ln2 = 0.69314718055994530941723212145818f template <typename genType> GLM_FUNC_QUALIFIER genType exp2(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'exp2' only accept floating-point inputs"); return std::exp(static_cast<genType>(0.69314718055994530941723212145818) * x); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> exp2(vecType<T, P> const & x) { return detail::functor1<T, T, P, vecType>::call(exp2, x); } // log2, ln2 = 0.69314718055994530941723212145818f template <typename genType> GLM_FUNC_QUALIFIER genType log2(genType x) { return log2(tvec1<genType>(x)).x; } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> log2(vecType<T, P> const & x) { return detail::compute_log2<T, P, vecType, std::numeric_limits<T>::is_iec559, detail::is_aligned<P>::value>::call(x); } // sqrt using std::sqrt; template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> sqrt(vecType<T, P> const & x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sqrt' only accept floating-point inputs"); return detail::compute_sqrt<vecType, T, P, detail::is_aligned<P>::value>::call(x); } // inversesqrt template <typename genType> GLM_FUNC_QUALIFIER genType inversesqrt(genType x) { return static_cast<genType>(1) / sqrt(x); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> inversesqrt(vecType<T, P> const & x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'inversesqrt' only accept floating-point inputs"); return detail::compute_inversesqrt<vecType, T, P, detail::is_aligned<P>::value>::call(x); } }//namespace glm #if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS # include "func_exponential_simd.inl" #endif