/// @ref core /// @file glm/detail/func_geometric.inl #include "func_exponential.hpp" #include "func_common.hpp" #include "type_vec2.hpp" #include "type_vec4.hpp" #include "type_float.hpp" namespace glm{ namespace detail { template <template <typename, precision> class vecType, typename T, precision P, bool Aligned> struct compute_length { GLM_FUNC_QUALIFIER static T call(vecType<T, P> const & v) { return sqrt(dot(v, v)); } }; template <template <typename, precision> class vecType, typename T, precision P, bool Aligned> struct compute_distance { GLM_FUNC_QUALIFIER static T call(vecType<T, P> const & p0, vecType<T, P> const & p1) { return length(p1 - p0); } }; template <template <class, precision> class vecType, typename T, precision P, bool Aligned> struct compute_dot{}; template <typename T, precision P, bool Aligned> struct compute_dot<tvec1, T, P, Aligned> { GLM_FUNC_QUALIFIER static T call(tvec1<T, P> const & a, tvec1<T, P> const & b) { return a.x * b.x; } }; template <typename T, precision P, bool Aligned> struct compute_dot<tvec2, T, P, Aligned> { GLM_FUNC_QUALIFIER static T call(tvec2<T, P> const & x, tvec2<T, P> const & y) { tvec2<T, P> tmp(x * y); return tmp.x + tmp.y; } }; template <typename T, precision P, bool Aligned> struct compute_dot<tvec3, T, P, Aligned> { GLM_FUNC_QUALIFIER static T call(tvec3<T, P> const & x, tvec3<T, P> const & y) { tvec3<T, P> tmp(x * y); return tmp.x + tmp.y + tmp.z; } }; template <typename T, precision P, bool Aligned> struct compute_dot<tvec4, T, P, Aligned> { GLM_FUNC_QUALIFIER static T call(tvec4<T, P> const & x, tvec4<T, P> const & y) { tvec4<T, P> tmp(x * y); return (tmp.x + tmp.y) + (tmp.z + tmp.w); } }; template <typename T, precision P, bool Aligned> struct compute_cross { GLM_FUNC_QUALIFIER static tvec3<T, P> call(tvec3<T, P> const & x, tvec3<T, P> const & y) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cross' accepts only floating-point inputs"); return tvec3<T, P>( x.y * y.z - y.y * x.z, x.z * y.x - y.z * x.x, x.x * y.y - y.x * x.y); } }; template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> struct compute_normalize { GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' accepts only floating-point inputs"); return v * inversesqrt(dot(v, v)); } }; template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> struct compute_faceforward { GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & N, vecType<T, P> const & I, vecType<T, P> const & Nref) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' accepts only floating-point inputs"); return dot(Nref, I) < static_cast<T>(0) ? N : -N; } }; template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> struct compute_reflect { GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & I, vecType<T, P> const & N) { return I - N * dot(N, I) * static_cast<T>(2); } }; template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> struct compute_refract { GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & I, vecType<T, P> const & N, T eta) { T const dotValue(dot(N, I)); T const k(static_cast<T>(1) - eta * eta * (static_cast<T>(1) - dotValue * dotValue)); return (eta * I - (eta * dotValue + std::sqrt(k)) * N) * static_cast<T>(k >= static_cast<T>(0)); } }; }//namespace detail // length template <typename genType> GLM_FUNC_QUALIFIER genType length(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'length' accepts only floating-point inputs"); return abs(x); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER T length(vecType<T, P> const & v) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' accepts only floating-point inputs"); return detail::compute_length<vecType, T, P, detail::is_aligned<P>::value>::call(v); } // distance template <typename genType> GLM_FUNC_QUALIFIER genType distance(genType const & p0, genType const & p1) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'distance' accepts only floating-point inputs"); return length(p1 - p0); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER T distance(vecType<T, P> const & p0, vecType<T, P> const & p1) { return detail::compute_distance<vecType, T, P, detail::is_aligned<P>::value>::call(p0, p1); } // dot template <typename T> GLM_FUNC_QUALIFIER T dot(T x, T y) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' accepts only floating-point inputs"); return x * y; } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER T dot(vecType<T, P> const & x, vecType<T, P> const & y) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' accepts only floating-point inputs"); return detail::compute_dot<vecType, T, P, detail::is_aligned<P>::value>::call(x, y); } // cross template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> cross(tvec3<T, P> const & x, tvec3<T, P> const & y) { return detail::compute_cross<T, P, detail::is_aligned<P>::value>::call(x, y); } // normalize template <typename genType> GLM_FUNC_QUALIFIER genType normalize(genType const & x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'normalize' accepts only floating-point inputs"); return x < genType(0) ? genType(-1) : genType(1); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> normalize(vecType<T, P> const & x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' accepts only floating-point inputs"); return detail::compute_normalize<T, P, vecType, detail::is_aligned<P>::value>::call(x); } // faceforward template <typename genType> GLM_FUNC_QUALIFIER genType faceforward(genType const & N, genType const & I, genType const & Nref) { return dot(Nref, I) < static_cast<genType>(0) ? N : -N; } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> faceforward(vecType<T, P> const & N, vecType<T, P> const & I, vecType<T, P> const & Nref) { return detail::compute_faceforward<T, P, vecType, detail::is_aligned<P>::value>::call(N, I, Nref); } // reflect template <typename genType> GLM_FUNC_QUALIFIER genType reflect(genType const & I, genType const & N) { return I - N * dot(N, I) * genType(2); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> reflect(vecType<T, P> const & I, vecType<T, P> const & N) { return detail::compute_reflect<T, P, vecType, detail::is_aligned<P>::value>::call(I, N); } // refract template <typename genType> GLM_FUNC_QUALIFIER genType refract(genType const & I, genType const & N, genType eta) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'refract' accepts only floating-point inputs"); genType const dotValue(dot(N, I)); genType const k(static_cast<genType>(1) - eta * eta * (static_cast<genType>(1) - dotValue * dotValue)); return (eta * I - (eta * dotValue + sqrt(k)) * N) * static_cast<genType>(k >= static_cast<genType>(0)); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> refract(vecType<T, P> const & I, vecType<T, P> const & N, T eta) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'refract' accepts only floating-point inputs"); return detail::compute_refract<T, P, vecType, detail::is_aligned<P>::value>::call(I, N, eta); } }//namespace glm #if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS # include "func_geometric_simd.inl" #endif