/// @ref core /// @file glm/gtc/quaternion_simd.inl #if GLM_ARCH & GLM_ARCH_SSE2_BIT namespace glm{ namespace detail { /* template <precision P> struct compute_quat_mul<float, P, true> { static tquat<float, P> call(tquat<float, P> const& q1, tquat<float, P> const& q2) { // SSE2 STATS: 11 shuffle, 8 mul, 8 add // SSE4 STATS: 3 shuffle, 4 mul, 4 dpps __m128 const mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3))); __m128 const mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2))); __m128 const mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1))); __m128 const mul3 = _mm_mul_ps(q1.Data, q2.Data); # if GLM_ARCH & GLM_ARCH_SSE41_BIT __m128 const add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff); __m128 const add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff); __m128 const add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff); __m128 const add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff); # else __m128 const mul4 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f)); __m128 const add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul4, mul4)); __m128 const add4 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1)); __m128 const mul5 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f)); __m128 const add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul5, mul5)); __m128 const add5 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1)); __m128 const mul6 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f)); __m128 const add2 = _mm_add_ps(mul6, _mm_movehl_ps(mul6, mul6)); __m128 const add6 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1)); __m128 const mul7 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f)); __m128 const add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul7, mul7)); __m128 const add7 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1)); #endif // This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than // the final code below. I'll keep this here for reference - maybe somebody else can do something better... // //__m128 xxyy = _mm_shuffle_ps(add4, add5, _MM_SHUFFLE(0, 0, 0, 0)); //__m128 zzww = _mm_shuffle_ps(add6, add7, _MM_SHUFFLE(0, 0, 0, 0)); // //return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0)); tquat<float, P> Result(uninitialize); _mm_store_ss(&Result.x, add4); _mm_store_ss(&Result.y, add5); _mm_store_ss(&Result.z, add6); _mm_store_ss(&Result.w, add7); return Result; } }; */ template <precision P> struct compute_dot<tquat, float, P, true> { static GLM_FUNC_QUALIFIER float call(tquat<float, P> const& x, tquat<float, P> const& y) { return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); } }; template <precision P> struct compute_quat_add<float, P, true> { static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) { tquat<float, P> Result(uninitialize); Result.data = _mm_add_ps(q.data, p.data); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT template <precision P> struct compute_quat_add<double, P, true> { static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) { tquat<double, P> Result(uninitialize); Result.data = _mm256_add_pd(a.data, b.data); return Result; } }; # endif template <precision P> struct compute_quat_sub<float, P, true> { static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) { tvec4<float, P> Result(uninitialize); Result.data = _mm_sub_ps(q.data, p.data); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT template <precision P> struct compute_quat_sub<double, P, true> { static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) { tquat<double, P> Result(uninitialize); Result.data = _mm256_sub_pd(a.data, b.data); return Result; } }; # endif template <precision P> struct compute_quat_mul_scalar<float, P, true> { static tquat<float, P> call(tquat<float, P> const& q, float s) { tvec4<float, P> Result(uninitialize); Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s)); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT template <precision P> struct compute_quat_mul_scalar<double, P, true> { static tquat<double, P> call(tquat<double, P> const& q, double s) { tquat<double, P> Result(uninitialize); Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s)); return Result; } }; # endif template <precision P> struct compute_quat_div_scalar<float, P, true> { static tquat<float, P> call(tquat<float, P> const& q, float s) { tvec4<float, P> Result(uninitialize); Result.data = _mm_div_ps(q.data, _mm_set_ps1(s)); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT template <precision P> struct compute_quat_div_scalar<double, P, true> { static tquat<double, P> call(tquat<double, P> const& q, double s) { tquat<double, P> Result(uninitialize); Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s)); return Result; } }; # endif template <precision P> struct compute_quat_mul_vec4<float, P, true> { static tvec4<float, P> call(tquat<float, P> const& q, tvec4<float, P> const& v) { __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3)); __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1)); __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2)); __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); __m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0)); __m128 const two = _mm_set1_ps(2.0f); uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); uuv = _mm_mul_ps(uuv, two); tvec4<float, P> Result(uninitialize); Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv)); return Result; } }; }//namespace detail }//namespace glm #endif//GLM_ARCH & GLM_ARCH_SSE2_BIT