/// @ref gtc_quaternion /// @file glm/gtc/quaternion.inl #include "../trigonometric.hpp" #include "../geometric.hpp" #include "../exponential.hpp" #include <limits> namespace glm{ namespace detail { template <typename T, precision P, bool Aligned> struct compute_dot<tquat, T, P, Aligned> { static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& x, tquat<T, P> const& y) { tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); return (tmp.x + tmp.y) + (tmp.z + tmp.w); } }; template <typename T, precision P, bool Aligned> struct compute_quat_add { static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) { return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); } }; template <typename T, precision P, bool Aligned> struct compute_quat_sub { static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) { return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); } }; template <typename T, precision P, bool Aligned> struct compute_quat_mul_scalar { static tquat<T, P> call(tquat<T, P> const& q, T s) { return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s); } }; template <typename T, precision P, bool Aligned> struct compute_quat_div_scalar { static tquat<T, P> call(tquat<T, P> const& q, T s) { return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s); } }; template <typename T, precision P, bool Aligned> struct compute_quat_mul_vec4 { static tvec4<T, P> call(tquat<T, P> const & q, tvec4<T, P> const & v) { return tvec4<T, P>(q * tvec3<T, P>(v), v.w); } }; }//namespace detail // -- Component accesses -- template <typename T, precision P> GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) { assert(i >= 0 && i < this->length()); return (&x)[i]; } template <typename T, precision P> GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const { assert(i >= 0 && i < this->length()); return (&x)[i]; } // -- Implicit basic constructors -- # if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) template <typename T, precision P> GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat() # ifndef GLM_FORCE_NO_CTOR_INIT : x(0), y(0), z(0), w(1) # endif {} # endif # if !GLM_HAS_DEFAULTED_FUNCTIONS template <typename T, precision P> GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q) : x(q.x), y(q.y), z(q.z), w(q.w) {} # endif//!GLM_HAS_DEFAULTED_FUNCTIONS template <typename T, precision P> template <precision Q> GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const & q) : x(q.x), y(q.y), z(q.z), w(q.w) {} // -- Explicit basic constructors -- template <typename T, precision P> GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor) {} template <typename T, precision P> GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v) : x(v.x), y(v.y), z(v.z), w(s) {} template <typename T, precision P> GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z) : x(x), y(y), z(z), w(w) {} // -- Conversion constructors -- template <typename T, precision P> template <typename U, precision Q> GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const & q) : x(static_cast<T>(q.x)) , y(static_cast<T>(q.y)) , z(static_cast<T>(q.z)) , w(static_cast<T>(q.w)) {} //template <typename valType> //GLM_FUNC_QUALIFIER tquat<valType>::tquat //( // valType const & pitch, // valType const & yaw, // valType const & roll //) //{ // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); // // this->w = c.x * c.y * c.z + s.x * s.y * s.z; // this->x = s.x * c.y * c.z - c.x * s.y * s.z; // this->y = c.x * s.y * c.z + s.x * c.y * s.z; // this->z = c.x * c.y * s.z - s.x * s.y * c.z; //} template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v) { tvec3<T, P> const LocalW(cross(u, v)); T Dot = detail::compute_dot<tvec3, T, P, detail::is_aligned<P>::value>::call(u, v); tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z); *this = normalize(q); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle) { tvec3<T, P> c = glm::cos(eulerAngle * T(0.5)); tvec3<T, P> s = glm::sin(eulerAngle * T(0.5)); this->w = c.x * c.y * c.z + s.x * s.y * s.z; this->x = s.x * c.y * c.z - c.x * s.y * s.z; this->y = c.x * s.y * c.z + s.x * c.y * s.z; this->z = c.x * c.y * s.z - s.x * s.y * c.z; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m) { *this = quat_cast(m); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m) { *this = quat_cast(m); } # if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>() { return mat3_cast(*this); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>() { return mat4_cast(*this); } # endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q) { return tquat<T, P>(q.w, -q.x, -q.y, -q.z); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q) { return conjugate(q) / dot(q, q); } // -- Unary arithmetic operators -- # if !GLM_HAS_DEFAULTED_FUNCTIONS template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q) { this->w = q.w; this->x = q.x; this->y = q.y; this->z = q.z; return *this; } # endif//!GLM_HAS_DEFAULTED_FUNCTIONS template <typename T, precision P> template <typename U> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q) { this->w = static_cast<T>(q.w); this->x = static_cast<T>(q.x); this->y = static_cast<T>(q.y); this->z = static_cast<T>(q.z); return *this; } template <typename T, precision P> template <typename U> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q) { return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); } template <typename T, precision P> template <typename U> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q) { return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); } template <typename T, precision P> template <typename U> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r) { tquat<T, P> const p(*this); tquat<T, P> const q(r); this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z; this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x; return *this; } template <typename T, precision P> template <typename U> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s) { return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); } template <typename T, precision P> template <typename U> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s) { return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); } // -- Unary bit operators -- template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q) { return q; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q) { return tquat<T, P>(-q.w, -q.x, -q.y, -q.z); } // -- Binary operators -- template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p) { return tquat<T, P>(q) += p; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p) { return tquat<T, P>(q) *= p; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v) { tvec3<T, P> const QuatVector(q.x, q.y, q.z); tvec3<T, P> const uv(glm::cross(QuatVector, v)); tvec3<T, P> const uuv(glm::cross(QuatVector, uv)); return v + ((uv * q.w) + uuv) * static_cast<T>(2); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q) { return glm::inverse(q) * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const& q, tvec4<T, P> const& v) { return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q) { return glm::inverse(q) * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s) { return tquat<T, P>( q.w * s, q.x * s, q.y * s, q.z * s); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q) { return q * s; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s) { return tquat<T, P>( q.w / s, q.x / s, q.y / s, q.z / s); } // -- Boolean operators -- template <typename T, precision P> GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2) { return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); } template <typename T, precision P> GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2) { return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); } // -- Operations -- template <typename T, precision P> GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q) { return glm::sqrt(dot(q, q)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q) { T len = length(q); if(len <= T(0)) // Problem return tquat<T, P>(1, 0, 0, 0); T oneOverLen = T(1) / len; return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2) { return tquat<T, P>( q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); } /* // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) { if(a <= T(0)) return x; if(a >= T(1)) return y; float fCos = dot(x, y); tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2; if(fCos < T(0)) { y2 = -y; fCos = -fCos; } //if(fCos > 1.0f) // problem float k0, k1; if(fCos > T(0.9999)) { k0 = T(1) - a; k1 = T(0) + a; //BUG!!! 1.0f + a; } else { T fSin = sqrt(T(1) - fCos * fCos); T fAngle = atan(fSin, fCos); T fOneOverSin = static_cast<T>(1) / fSin; k0 = sin((T(1) - a) * fAngle) * fOneOverSin; k1 = sin((T(0) + a) * fAngle) * fOneOverSin; } return tquat<T, P>( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> mix2 ( tquat<T, P> const & x, tquat<T, P> const & y, T const & a ) { bool flip = false; if(a <= static_cast<T>(0)) return x; if(a >= static_cast<T>(1)) return y; T cos_t = dot(x, y); if(cos_t < T(0)) { cos_t = -cos_t; flip = true; } T alpha(0), beta(0); if(T(1) - cos_t < 1e-7) beta = static_cast<T>(1) - alpha; else { T theta = acos(cos_t); T sin_t = sin(theta); beta = sin(theta * (T(1) - alpha)) / sin_t; alpha = sin(alpha * theta) / sin_t; } if(flip) alpha = -alpha; return normalize(beta * x + alpha * y); } */ template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a) { T cosTheta = dot(x, y); // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation return tquat<T, P>( mix(x.w, y.w, a), mix(x.x, y.x, a), mix(x.y, y.y, a), mix(x.z, y.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); } } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) { // Lerp is only defined in [0, 1] assert(a >= static_cast<T>(0)); assert(a <= static_cast<T>(1)); return x * (T(1) - a) + (y * a); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) { tquat<T, P> z = y; T cosTheta = dot(x, y); // If cosTheta < 0, the interpolation will take the long way around the sphere. // To fix this, one quat must be negated. if (cosTheta < T(0)) { z = -y; cosTheta = -cosTheta; } // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation return tquat<T, P>( mix(x.w, z.w, a), mix(x.x, z.x, a), mix(x.y, z.y, a), mix(x.z, z.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); } } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v) { tvec3<T, P> Tmp = v; // Axis of rotation must be normalised T len = glm::length(Tmp); if(abs(len - T(1)) > T(0.001)) { T oneOverLen = static_cast<T>(1) / len; Tmp.x *= oneOverLen; Tmp.y *= oneOverLen; Tmp.z *= oneOverLen; } T const AngleRad(angle); T const Sin = sin(AngleRad * T(0.5)); return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); //return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x) { return tvec3<T, P>(pitch(x), yaw(x), roll(x)); } template <typename T, precision P> GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q) { return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); } template <typename T, precision P> GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q) { return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); } template <typename T, precision P> GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q) { return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1))); } template <typename T, precision P> GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q) { tmat3x3<T, P> Result(T(1)); T qxx(q.x * q.x); T qyy(q.y * q.y); T qzz(q.z * q.z); T qxz(q.x * q.z); T qxy(q.x * q.y); T qyz(q.y * q.z); T qwx(q.w * q.x); T qwy(q.w * q.y); T qwz(q.w * q.z); Result[0][0] = T(1) - T(2) * (qyy + qzz); Result[0][1] = T(2) * (qxy + qwz); Result[0][2] = T(2) * (qxz - qwy); Result[1][0] = T(2) * (qxy - qwz); Result[1][1] = T(1) - T(2) * (qxx + qzz); Result[1][2] = T(2) * (qyz + qwx); Result[2][0] = T(2) * (qxz + qwy); Result[2][1] = T(2) * (qyz - qwx); Result[2][2] = T(1) - T(2) * (qxx + qyy); return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q) { return tmat4x4<T, P>(mat3_cast(q)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m) { T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; int biggestIndex = 0; T fourBiggestSquaredMinus1 = fourWSquaredMinus1; if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourXSquaredMinus1; biggestIndex = 1; } if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourYSquaredMinus1; biggestIndex = 2; } if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourZSquaredMinus1; biggestIndex = 3; } T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); T mult = static_cast<T>(0.25) / biggestVal; tquat<T, P> Result(uninitialize); switch(biggestIndex) { case 0: Result.w = biggestVal; Result.x = (m[1][2] - m[2][1]) * mult; Result.y = (m[2][0] - m[0][2]) * mult; Result.z = (m[0][1] - m[1][0]) * mult; break; case 1: Result.w = (m[1][2] - m[2][1]) * mult; Result.x = biggestVal; Result.y = (m[0][1] + m[1][0]) * mult; Result.z = (m[2][0] + m[0][2]) * mult; break; case 2: Result.w = (m[2][0] - m[0][2]) * mult; Result.x = (m[0][1] + m[1][0]) * mult; Result.y = biggestVal; Result.z = (m[1][2] + m[2][1]) * mult; break; case 3: Result.w = (m[0][1] - m[1][0]) * mult; Result.x = (m[2][0] + m[0][2]) * mult; Result.y = (m[1][2] + m[2][1]) * mult; Result.z = biggestVal; break; default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. assert(false); break; } return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4) { return quat_cast(tmat3x3<T, P>(m4)); } template <typename T, precision P> GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x) { return acos(x.w) * T(2); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x) { T tmp1 = static_cast<T>(1) - x.w * x.w; if(tmp1 <= static_cast<T>(0)) return tvec3<T, P>(0, 0, 1); T tmp2 = static_cast<T>(1) / sqrt(tmp1); return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v) { tquat<T, P> Result(uninitialize); T const a(angle); T const s = glm::sin(a * static_cast<T>(0.5)); Result.w = glm::cos(a * static_cast<T>(0.5)); Result.x = v.x * s; Result.y = v.y * s; Result.z = v.z * s; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y) { tvec4<bool, P> Result(uninitialize); for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] < y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) { tvec4<bool, P> Result(uninitialize); for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] <= y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y) { tvec4<bool, P> Result(uninitialize); for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] > y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) { tvec4<bool, P> Result(uninitialize); for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] >= y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y) { tvec4<bool, P> Result(uninitialize); for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] == y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y) { tvec4<bool, P> Result(uninitialize); for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] != y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> isnan(tquat<T, P> const& q) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs"); return tvec4<bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<bool, P> isinf(tquat<T, P> const& q) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs"); return tvec4<bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); } }//namespace glm #if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_ALIGNED_TYPE # include "quaternion_simd.inl" #endif