/// @ref gtx_euler_angles /// @file glm/gtx/euler_angles.inl #include "compatibility.hpp" // glm::atan2 namespace glm { template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleX ( T const & angleX ) { T cosX = glm::cos(angleX); T sinX = glm::sin(angleX); return tmat4x4<T, defaultp>( T(1), T(0), T(0), T(0), T(0), cosX, sinX, T(0), T(0),-sinX, cosX, T(0), T(0), T(0), T(0), T(1)); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleY ( T const & angleY ) { T cosY = glm::cos(angleY); T sinY = glm::sin(angleY); return tmat4x4<T, defaultp>( cosY, T(0), -sinY, T(0), T(0), T(1), T(0), T(0), sinY, T(0), cosY, T(0), T(0), T(0), T(0), T(1)); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleZ ( T const & angleZ ) { T cosZ = glm::cos(angleZ); T sinZ = glm::sin(angleZ); return tmat4x4<T, defaultp>( cosZ, sinZ, T(0), T(0), -sinZ, cosZ, T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1)); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleXY ( T const & angleX, T const & angleY ) { T cosX = glm::cos(angleX); T sinX = glm::sin(angleX); T cosY = glm::cos(angleY); T sinY = glm::sin(angleY); return tmat4x4<T, defaultp>( cosY, -sinX * -sinY, cosX * -sinY, T(0), T(0), cosX, sinX, T(0), sinY, -sinX * cosY, cosX * cosY, T(0), T(0), T(0), T(0), T(1)); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleYX ( T const & angleY, T const & angleX ) { T cosX = glm::cos(angleX); T sinX = glm::sin(angleX); T cosY = glm::cos(angleY); T sinY = glm::sin(angleY); return tmat4x4<T, defaultp>( cosY, 0, -sinY, T(0), sinY * sinX, cosX, cosY * sinX, T(0), sinY * cosX, -sinX, cosY * cosX, T(0), T(0), T(0), T(0), T(1)); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleXZ ( T const & angleX, T const & angleZ ) { return eulerAngleX(angleX) * eulerAngleZ(angleZ); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleZX ( T const & angleZ, T const & angleX ) { return eulerAngleZ(angleZ) * eulerAngleX(angleX); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleYZ ( T const & angleY, T const & angleZ ) { return eulerAngleY(angleY) * eulerAngleZ(angleZ); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleZY ( T const & angleZ, T const & angleY ) { return eulerAngleZ(angleZ) * eulerAngleY(angleY); } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleXYZ ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(-t1); T c2 = glm::cos(-t2); T c3 = glm::cos(-t3); T s1 = glm::sin(-t1); T s2 = glm::sin(-t2); T s3 = glm::sin(-t3); tmat4x4<T, defaultp> Result; Result[0][0] = c2 * c3; Result[0][1] =-c1 * s3 + s1 * s2 * c3; Result[0][2] = s1 * s3 + c1 * s2 * c3; Result[0][3] = static_cast<T>(0); Result[1][0] = c2 * s3; Result[1][1] = c1 * c3 + s1 * s2 * s3; Result[1][2] =-s1 * c3 + c1 * s2 * s3; Result[1][3] = static_cast<T>(0); Result[2][0] =-s2; Result[2][1] = s1 * c2; Result[2][2] = c1 * c2; Result[2][3] = static_cast<T>(0); Result[3][0] = static_cast<T>(0); Result[3][1] = static_cast<T>(0); Result[3][2] = static_cast<T>(0); Result[3][3] = static_cast<T>(1); return Result; } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleYXZ ( T const & yaw, T const & pitch, T const & roll ) { T tmp_ch = glm::cos(yaw); T tmp_sh = glm::sin(yaw); T tmp_cp = glm::cos(pitch); T tmp_sp = glm::sin(pitch); T tmp_cb = glm::cos(roll); T tmp_sb = glm::sin(roll); tmat4x4<T, defaultp> Result; Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = static_cast<T>(0); Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = static_cast<T>(0); Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = static_cast<T>(0); Result[3][0] = static_cast<T>(0); Result[3][1] = static_cast<T>(0); Result[3][2] = static_cast<T>(0); Result[3][3] = static_cast<T>(1); return Result; } template <typename T> GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> yawPitchRoll ( T const & yaw, T const & pitch, T const & roll ) { T tmp_ch = glm::cos(yaw); T tmp_sh = glm::sin(yaw); T tmp_cp = glm::cos(pitch); T tmp_sp = glm::sin(pitch); T tmp_cb = glm::cos(roll); T tmp_sb = glm::sin(roll); tmat4x4<T, defaultp> Result; Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = static_cast<T>(0); Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = static_cast<T>(0); Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = static_cast<T>(0); Result[3][0] = static_cast<T>(0); Result[3][1] = static_cast<T>(0); Result[3][2] = static_cast<T>(0); Result[3][3] = static_cast<T>(1); return Result; } template <typename T> GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> orientate2 ( T const & angle ) { T c = glm::cos(angle); T s = glm::sin(angle); tmat2x2<T, defaultp> Result; Result[0][0] = c; Result[0][1] = s; Result[1][0] = -s; Result[1][1] = c; return Result; } template <typename T> GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> orientate3 ( T const & angle ) { T c = glm::cos(angle); T s = glm::sin(angle); tmat3x3<T, defaultp> Result; Result[0][0] = c; Result[0][1] = s; Result[0][2] = 0.0f; Result[1][0] = -s; Result[1][1] = c; Result[1][2] = 0.0f; Result[2][0] = 0.0f; Result[2][1] = 0.0f; Result[2][2] = 1.0f; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tmat3x3<T, P> orientate3 ( tvec3<T, P> const & angles ) { return tmat3x3<T, P>(yawPitchRoll(angles.z, angles.x, angles.y)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tmat4x4<T, P> orientate4 ( tvec3<T, P> const & angles ) { return yawPitchRoll(angles.z, angles.x, angles.y); } template <typename T> GLM_FUNC_DECL void extractEulerAngleXYZ(tmat4x4<T, defaultp> const & M, T & t1, T & t2, T & t3) { float T1 = glm::atan2<T, defaultp>(M[2][1], M[2][2]); float C2 = glm::sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]); float T2 = glm::atan2<T, defaultp>(-M[2][0], C2); float S1 = glm::sin(T1); float C1 = glm::cos(T1); float T3 = glm::atan2<T, defaultp>(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]); t1 = -T1; t2 = -T2; t3 = -T3; } }//namespace glm