/// @ref gtx_simd_vec4 /// @file glm/gtx/simd_vec4.hpp /// /// @see core (dependence) /// /// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4 /// @ingroup gtx /// /// @brief SIMD implementation of vec4 type. /// /// <glm/gtx/simd_vec4.hpp> need to be included to use these functionalities. #pragma once // Dependency: #include "../glm.hpp" #if(GLM_ARCH != GLM_ARCH_PURE) #if(GLM_ARCH & GLM_ARCH_SSE2_BIT) # include "../detail/intrinsic_common.hpp" # include "../detail/intrinsic_geometric.hpp" # include "../detail/intrinsic_integer.hpp" #else # error "GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics" #endif #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTX_simd_vec4 extension included") # pragma message("GLM: GLM_GTX_simd_vec4 extension is deprecated and will be removed in GLM 0.9.9. Use *vec4 types instead and use compiler SIMD arguments.") #endif // Warning silencer for nameless struct/union. #if (GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(push) # pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union #endif namespace glm { enum comp { X = 0, R = 0, S = 0, Y = 1, G = 1, T = 1, Z = 2, B = 2, P = 2, W = 3, A = 3, Q = 3 }; }//namespace glm namespace glm{ namespace detail { /// 4-dimensional vector implemented using SIMD SEE intrinsics. /// \ingroup gtx_simd_vec4 GLM_ALIGNED_STRUCT(16) fvec4SIMD { typedef float value_type; typedef std::size_t size_type; typedef fvec4SIMD type; typedef tvec4<float, defaultp> pure_type; typedef tvec4<bool, highp> bool_type; #ifdef GLM_SIMD_ENABLE_XYZW_UNION union { __m128 Data; struct {float x, y, z, w;}; }; #else __m128 Data; #endif ////////////////////////////////////// // Implicit basic constructors fvec4SIMD() GLM_DEFAULT_CTOR; fvec4SIMD(fvec4SIMD const & v) GLM_DEFAULT; fvec4SIMD(__m128 const & Data); ////////////////////////////////////// // Explicit basic constructors explicit fvec4SIMD( ctor); explicit fvec4SIMD( float const & s); explicit fvec4SIMD( float const & x, float const & y, float const & z, float const & w); explicit fvec4SIMD( vec4 const & v); //////////////////////////////////////// //// Conversion vector constructors fvec4SIMD(vec2 const & v, float const & s1, float const & s2); fvec4SIMD(float const & s1, vec2 const & v, float const & s2); fvec4SIMD(float const & s1, float const & s2, vec2 const & v); fvec4SIMD(vec3 const & v, float const & s); fvec4SIMD(float const & s, vec3 const & v); fvec4SIMD(vec2 const & v1, vec2 const & v2); //fvec4SIMD(ivec4SIMD const & v); ////////////////////////////////////// // Unary arithmetic operators fvec4SIMD& operator= (fvec4SIMD const & v) GLM_DEFAULT; fvec4SIMD& operator+=(fvec4SIMD const & v); fvec4SIMD& operator-=(fvec4SIMD const & v); fvec4SIMD& operator*=(fvec4SIMD const & v); fvec4SIMD& operator/=(fvec4SIMD const & v); fvec4SIMD& operator+=(float const & s); fvec4SIMD& operator-=(float const & s); fvec4SIMD& operator*=(float const & s); fvec4SIMD& operator/=(float const & s); fvec4SIMD& operator++(); fvec4SIMD& operator--(); ////////////////////////////////////// // Swizzle operators template <comp X_, comp Y_, comp Z_, comp W_> fvec4SIMD& swizzle(); template <comp X_, comp Y_, comp Z_, comp W_> fvec4SIMD swizzle() const; template <comp X_, comp Y_, comp Z_> fvec4SIMD swizzle() const; template <comp X_, comp Y_> fvec4SIMD swizzle() const; template <comp X_> fvec4SIMD swizzle() const; }; }//namespace detail typedef glm::detail::fvec4SIMD simdVec4; /// @addtogroup gtx_simd_vec4 /// @{ //! Convert a simdVec4 to a vec4. /// @see gtx_simd_vec4 vec4 vec4_cast( detail::fvec4SIMD const & x); //! Returns x if x >= 0; otherwise, it returns -x. /// @see gtx_simd_vec4 detail::fvec4SIMD abs(detail::fvec4SIMD const & x); //! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0. /// @see gtx_simd_vec4 detail::fvec4SIMD sign(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer that is less then or equal to x. /// @see gtx_simd_vec4 detail::fvec4SIMD floor(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer to x //! whose absolute value is not larger than the absolute value of x. /// @see gtx_simd_vec4 detail::fvec4SIMD trunc(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer to x. //! The fraction 0.5 will round in a direction chosen by the //! implementation, presumably the direction that is fastest. //! This includes the possibility that round(x) returns the //! same value as roundEven(x) for all values of x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD round(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer to x. //! A fractional part of 0.5 will round toward the nearest even //! integer. (Both 3.5 and 4.5 for x will return 4.0.) /// /// @see gtx_simd_vec4 //detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer //! that is greater than or equal to x. /// @see gtx_simd_vec4 detail::fvec4SIMD ceil(detail::fvec4SIMD const & x); //! Return x - floor(x). /// /// @see gtx_simd_vec4 detail::fvec4SIMD fract(detail::fvec4SIMD const & x); //! Modulus. Returns x - y * floor(x / y) //! for each component in x using the floating point value y. /// /// @see gtx_simd_vec4 detail::fvec4SIMD mod( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); //! Modulus. Returns x - y * floor(x / y) //! for each component in x using the floating point value y. /// /// @see gtx_simd_vec4 detail::fvec4SIMD mod( detail::fvec4SIMD const & x, float const & y); //! Returns the fractional part of x and sets i to the integer //! part (as a whole number floating point value). Both the //! return value and the output parameter will have the same //! sign as x. //! (From GLM_GTX_simd_vec4 extension, common function) //detail::fvec4SIMD modf( // detail::fvec4SIMD const & x, // detail::fvec4SIMD & i); //! Returns y if y < x; otherwise, it returns x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD min( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); detail::fvec4SIMD min( detail::fvec4SIMD const & x, float const & y); //! Returns y if x < y; otherwise, it returns x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD max( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); detail::fvec4SIMD max( detail::fvec4SIMD const & x, float const & y); //! Returns min(max(x, minVal), maxVal) for each component in x //! using the floating-point values minVal and maxVal. /// /// @see gtx_simd_vec4 detail::fvec4SIMD clamp( detail::fvec4SIMD const & x, detail::fvec4SIMD const & minVal, detail::fvec4SIMD const & maxVal); detail::fvec4SIMD clamp( detail::fvec4SIMD const & x, float const & minVal, float const & maxVal); //! \return If genTypeU is a floating scalar or vector: //! Returns x * (1.0 - a) + y * a, i.e., the linear blend of //! x and y using the floating-point value a. //! The value for a is not restricted to the range [0, 1]. //! //! \return If genTypeU is a boolean scalar or vector: //! Selects which vector each returned component comes //! from. For a component of a that is false, the //! corresponding component of x is returned. For a //! component of a that is true, the corresponding //! component of y is returned. Components of x and y that //! are not selected are allowed to be invalid floating point //! values and will have no effect on the results. Thus, this //! provides different functionality than //! genType mix(genType x, genType y, genType(a)) //! where a is a Boolean vector. //! //! From GLSL 1.30.08 specification, section 8.3 //! //! \param[in] x Floating point scalar or vector. //! \param[in] y Floating point scalar or vector. //! \param[in] a Floating point or boolean scalar or vector. //! /// \todo Test when 'a' is a boolean. /// /// @see gtx_simd_vec4 detail::fvec4SIMD mix( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y, detail::fvec4SIMD const & a); //! Returns 0.0 if x < edge, otherwise it returns 1.0. /// /// @see gtx_simd_vec4 detail::fvec4SIMD step( detail::fvec4SIMD const & edge, detail::fvec4SIMD const & x); detail::fvec4SIMD step( float const & edge, detail::fvec4SIMD const & x); //! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and //! performs smooth Hermite interpolation between 0 and 1 //! when edge0 < x < edge1. This is useful in cases where //! you would want a threshold function with a smooth //! transition. This is equivalent to: //! genType t; //! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1); //! return t * t * (3 - 2 * t); //! Results are undefined if edge0 >= edge1. /// /// @see gtx_simd_vec4 detail::fvec4SIMD smoothstep( detail::fvec4SIMD const & edge0, detail::fvec4SIMD const & edge1, detail::fvec4SIMD const & x); detail::fvec4SIMD smoothstep( float const & edge0, float const & edge1, detail::fvec4SIMD const & x); //! Returns true if x holds a NaN (not a number) //! representation in the underlying implementation's set of //! floating point representations. Returns false otherwise, //! including for implementations with no NaN //! representations. /// /// @see gtx_simd_vec4 //bvec4 isnan(detail::fvec4SIMD const & x); //! Returns true if x holds a positive infinity or negative //! infinity representation in the underlying implementation's //! set of floating point representations. Returns false //! otherwise, including for implementations with no infinity //! representations. /// /// @see gtx_simd_vec4 //bvec4 isinf(detail::fvec4SIMD const & x); //! Returns a signed or unsigned integer value representing //! the encoding of a floating-point value. The floatingpoint //! value's bit-level representation is preserved. /// /// @see gtx_simd_vec4 //detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value); //! Returns a floating-point value corresponding to a signed //! or unsigned integer encoding of a floating-point value. //! If an inf or NaN is passed in, it will not signal, and the //! resulting floating point value is unspecified. Otherwise, //! the bit-level representation is preserved. /// /// @see gtx_simd_vec4 //detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value); //! Computes and returns a * b + c. /// /// @see gtx_simd_vec4 detail::fvec4SIMD fma( detail::fvec4SIMD const & a, detail::fvec4SIMD const & b, detail::fvec4SIMD const & c); //! Splits x into a floating-point significand in the range //! [0.5, 1.0) and an integral exponent of two, such that: //! x = significand * exp(2, exponent) //! The significand is returned by the function and the //! exponent is returned in the parameter exp. For a //! floating-point value of zero, the significant and exponent //! are both zero. For a floating-point value that is an //! infinity or is not a number, the results are undefined. /// /// @see gtx_simd_vec4 //detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp); //! Builds a floating-point number from x and the //! corresponding integral exponent of two in exp, returning: //! significand * exp(2, exponent) //! If this product is too large to be represented in the //! floating-point type, the result is undefined. /// /// @see gtx_simd_vec4 //detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp); //! Returns the length of x, i.e., sqrt(x * x). /// /// @see gtx_simd_vec4 float length( detail::fvec4SIMD const & x); //! Returns the length of x, i.e., sqrt(x * x). //! Less accurate but much faster than simdLength. /// /// @see gtx_simd_vec4 float fastLength( detail::fvec4SIMD const & x); //! Returns the length of x, i.e., sqrt(x * x). //! Slightly more accurate but much slower than simdLength. /// /// @see gtx_simd_vec4 float niceLength( detail::fvec4SIMD const & x); //! Returns the length of x, i.e., sqrt(x * x). /// /// @see gtx_simd_vec4 detail::fvec4SIMD length4( detail::fvec4SIMD const & x); //! Returns the length of x, i.e., sqrt(x * x). //! Less accurate but much faster than simdLength4. /// /// @see gtx_simd_vec4 detail::fvec4SIMD fastLength4( detail::fvec4SIMD const & x); //! Returns the length of x, i.e., sqrt(x * x). //! Slightly more accurate but much slower than simdLength4. /// /// @see gtx_simd_vec4 detail::fvec4SIMD niceLength4( detail::fvec4SIMD const & x); //! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1). /// /// @see gtx_simd_vec4 float distance( detail::fvec4SIMD const & p0, detail::fvec4SIMD const & p1); //! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1). /// /// @see gtx_simd_vec4 detail::fvec4SIMD distance4( detail::fvec4SIMD const & p0, detail::fvec4SIMD const & p1); //! Returns the dot product of x and y, i.e., result = x * y. /// /// @see gtx_simd_vec4 float simdDot( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); //! Returns the dot product of x and y, i.e., result = x * y. /// /// @see gtx_simd_vec4 detail::fvec4SIMD dot4( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); //! Returns the cross product of x and y. /// /// @see gtx_simd_vec4 detail::fvec4SIMD cross( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); //! Returns a vector in the same direction as x but with length of 1. /// /// @see gtx_simd_vec4 detail::fvec4SIMD normalize( detail::fvec4SIMD const & x); //! Returns a vector in the same direction as x but with length of 1. //! Less accurate but much faster than simdNormalize. /// /// @see gtx_simd_vec4 detail::fvec4SIMD fastNormalize( detail::fvec4SIMD const & x); //! If dot(Nref, I) < 0.0, return N, otherwise, return -N. /// /// @see gtx_simd_vec4 detail::fvec4SIMD simdFaceforward( detail::fvec4SIMD const & N, detail::fvec4SIMD const & I, detail::fvec4SIMD const & Nref); //! For the incident vector I and surface orientation N, //! returns the reflection direction : result = I - 2.0 * dot(N, I) * N. /// /// @see gtx_simd_vec4 detail::fvec4SIMD reflect( detail::fvec4SIMD const & I, detail::fvec4SIMD const & N); //! For the incident vector I and surface normal N, //! and the ratio of indices of refraction eta, //! return the refraction vector. /// /// @see gtx_simd_vec4 detail::fvec4SIMD refract( detail::fvec4SIMD const & I, detail::fvec4SIMD const & N, float const & eta); //! Returns the positive square root of x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD sqrt( detail::fvec4SIMD const & x); //! Returns the positive square root of x with the nicest quality but very slow. //! Slightly more accurate but much slower than simdSqrt. /// /// @see gtx_simd_vec4 detail::fvec4SIMD niceSqrt( detail::fvec4SIMD const & x); //! Returns the positive square root of x //! Less accurate but much faster than sqrt. /// /// @see gtx_simd_vec4 detail::fvec4SIMD fastSqrt( detail::fvec4SIMD const & x); //! Returns the reciprocal of the positive square root of x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD inversesqrt( detail::fvec4SIMD const & x); //! Returns the reciprocal of the positive square root of x. //! Faster than inversesqrt but less accurate. /// /// @see gtx_simd_vec4 detail::fvec4SIMD fastInversesqrt( detail::fvec4SIMD const & x); /// @} }//namespace glm #include "simd_vec4.inl" #if (GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(pop) #endif #endif//(GLM_ARCH != GLM_ARCH_PURE)