init commit

This commit is contained in:
Eikthyrnir 2023-11-18 02:25:43 +01:00
commit 0e406f71c8
102 changed files with 13806 additions and 0 deletions

8
.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
# Ignore everything
*
# But not these files...
!.gitignore
!*/
!/*cw\ */src/**
!/*cw\ */shaders/**

View File

@ -0,0 +1,8 @@
#version 430 core
out vec4 color;
void main()
{
color = vec4(0.0, 0.6, 0.95, 1.0);
}

View File

@ -0,0 +1,8 @@
#version 430 core
layout(location = 0) in vec4 vertexPosition;
void main()
{
gl_Position = vertexPosition;
}

View File

@ -0,0 +1,6 @@
#version 430 core
out vec4 color;
void main()
{
color = vec4(0.0, 0.6, 0.95, 1.0);
}

View File

@ -0,0 +1,10 @@
#version 430 core
layout(location = 0) in vec4 vertexPosition;
uniform mat4 transformation;
void main()
{
gl_Position = transformation * vertexPosition;
}

View File

@ -0,0 +1,10 @@
#version 430 core
in vec4 color;
out vec4 out_color;
void main()
{
out_color = color;
}

View File

@ -0,0 +1,14 @@
#version 430 core
layout(location = 0) in vec4 vertexPosition;
layout(location = 1) in vec4 vertexColor;
uniform mat4 transformation;
out vec4 color;
void main()
{
color = vertexColor;
gl_Position = transformation * vertexPosition;
}

View File

@ -0,0 +1,11 @@
#version 430 core
uniform vec3 objectColor;
in vec3 normal;
out vec4 out_color;
void main()
{
out_color = vec4(normal, 1. );
}

View File

@ -0,0 +1,14 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
out vec3 normal;
void main()
{
normal=vertexNormal;
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

104
cw 1/src/Box.cpp Normal file
View File

@ -0,0 +1,104 @@
// dane 36 wierzcholkow i kolorow opisujace model pudelka
const float boxPositions[] = {
0.25f, 0.25f, 0.75f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f,
};
const float boxColors[] = {
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.0f, 1.0f,
0.5f, 0.5f, 0.0f, 1.0f,
0.5f, 0.5f, 0.0f, 1.0f,
0.5f, 0.5f, 0.0f, 1.0f,
0.5f, 0.5f, 0.0f, 1.0f,
0.5f, 0.5f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
};

31
cw 1/src/Camera.cpp Normal file
View File

@ -0,0 +1,31 @@
#include "Camera.h"
glm::mat4 Core::createPerspectiveMatrix(float zNear, float zFar, float frustumScale)
{
glm::mat4 perspective;
perspective[0][0] = 1.f;
perspective[1][1] = frustumScale;
perspective[2][2] = (zFar + zNear) / (zNear - zFar);
perspective[3][2] = (2 * zFar * zNear) / (zNear - zFar);
perspective[2][3] = -1;
perspective[3][3] = 0;
return perspective;
}
glm::mat4 Core::createViewMatrix( glm::vec3 position, glm::vec3 forward, glm::vec3 up )
{
glm::vec3 side = glm::cross(forward, up);
// Trzeba pamietac o minusie przy ustawianiu osi Z kamery.
// Wynika to z tego, ze standardowa macierz perspektywiczna zaklada, ze "z przodu" jest ujemna (a nie dodatnia) czesc osi Z.
glm::mat4 cameraRotation;
cameraRotation[0][0] = side.x; cameraRotation[1][0] = side.y; cameraRotation[2][0] = side.z;
cameraRotation[0][1] = up.x; cameraRotation[1][1] = up.y; cameraRotation[2][1] = up.z;
cameraRotation[0][2] = -forward.x; cameraRotation[1][2] = -forward.y; cameraRotation[2][2] = -forward.z;
glm::mat4 cameraTranslation;
cameraTranslation[3] = glm::vec4(-position, 1.0f);
return cameraRotation * cameraTranslation;
}

14
cw 1/src/Camera.h Normal file
View File

@ -0,0 +1,14 @@
#pragma once
#include "glm.hpp"
namespace Core
{
glm::mat4 createPerspectiveMatrix(float zNear = 0.1f, float zFar = 100.0f, float frustumScale = 1.f);
// position - pozycja kamery
// forward - wektor "do przodu" kamery (jednostkowy)
// up - wektor "w gore" kamery (jednostkowy)
// up i forward musza byc ortogonalne!
glm::mat4 createViewMatrix(glm::vec3 position, glm::vec3 forward, glm::vec3 up);
}

76
cw 1/src/Render_Utils.cpp Normal file
View File

@ -0,0 +1,76 @@
#include "Render_Utils.h"
#include "freeglut.h"
#include <iostream>
void Core::drawVAO(GLuint VAO, int numVertices)
{
glBindVertexArray(VAO);
glDrawArrays(GL_TRIANGLES, 0, numVertices);
glBindVertexArray(0);
}
void Core::drawVAOIndexed(GLuint VAO, int numVertices)
{
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, numVertices, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
}
GLuint Core::initVAO(const float* vertexArray, int numVertices, int elementSize) {
GLuint VBO, VAO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
// bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, numVertices * elementSize * sizeof(float), vertexArray, GL_STATIC_DRAW);
glVertexAttribPointer(0, elementSize, GL_FLOAT, GL_FALSE, elementSize * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
// note that this is allowed, the call to glVertexAttribPointer registered VBO as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind
glBindBuffer(GL_ARRAY_BUFFER, 0);
// You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other
// VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.
glBindVertexArray(0);
return VAO;
}
GLuint Core::initVAOIndexed(const float* vertexArray, const unsigned int* indexArray, int numVertices, int elementSize, int numIndexes) {
GLuint VBO, VAO, EBO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO);
// bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, numVertices * elementSize * sizeof(float), vertexArray, GL_STATIC_DRAW);
glVertexAttribPointer(0, elementSize, GL_FLOAT, GL_FALSE, elementSize * sizeof(float), (void*)0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, numIndexes*sizeof(unsigned int), indexArray, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
// note that this is allowed, the call to glVertexAttribPointer registered VBO as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind
glBindBuffer(GL_ARRAY_BUFFER, 0);
// You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other
// VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.
glBindVertexArray(0);
return VAO;
}

26
cw 1/src/Render_Utils.h Normal file
View File

@ -0,0 +1,26 @@
#pragma once
#include "glew.h"
namespace Core
{
// VAO - zmienna zawierajaca wskaznik do VAO
// numVertices - liczba wierzcholkow do narysowania
void drawVAO(GLuint VAO, int numVertices);
// VAO - zmienna zawierajaca wskaznik do VAO
// numIndexes - liczba indeksow do naryowania
void drawVAOIndexed(GLuint VAO, int numVertices);
// vertexArray - jednowymiarowa tablica zawierajaca wartosci opisujace pozycje kolejnych wierzcholkow w jednym ciagu (x1, y1, z1, w1, x2, y2, z2, w2, ...)
// numVertices - liczba wierzcholkow do narysowania
// elementSize - liczba wartosci opisujacych pojedynczy wierzcholek (np. 3 gdy wierzcholek opisany jest trojka (x, y, z))
GLuint initVAO(const float* vertexArray, int numVertices, int elementSize);
// indexArray - jednowymiarowa tablica zawierajaca indeksy wierzcholkow kolejnych trojkatow w jednym ciagu (t1_i1, t1_i2, t1_i3, t2_i1, t2_i2, t2_i3, ...)
// numIndexes - liczba indeksow w tablicy indexArray
GLuint initVAOIndexed(const float* vertexArray, const unsigned int* indexArray, int numVertices, int elementSize, int numIndexes);
void deleteVAO(GLuint VAO);
}

102
cw 1/src/Shader_Loader.cpp Normal file
View File

@ -0,0 +1,102 @@
#include "Shader_Loader.h"
#include<iostream>
#include<fstream>
#include<vector>
using namespace Core;
Shader_Loader::Shader_Loader(void){}
Shader_Loader::~Shader_Loader(void){}
std::string Shader_Loader::ReadShader(char *filename)
{
std::string shaderCode;
std::ifstream file(filename, std::ios::in);
if (!file.good())
{
std::cout << "Can't read file " << filename << std::endl;
std::terminate();
}
file.seekg(0, std::ios::end);
shaderCode.resize((unsigned int)file.tellg());
file.seekg(0, std::ios::beg);
file.read(&shaderCode[0], shaderCode.size());
file.close();
return shaderCode;
}
GLuint Shader_Loader::CreateShader(GLenum shaderType, std::string
source, char* shaderName)
{
int compile_result = 0;
GLuint shader = glCreateShader(shaderType);
const char *shader_code_ptr = source.c_str();
const int shader_code_size = source.size();
glShaderSource(shader, 1, &shader_code_ptr, &shader_code_size);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &compile_result);
//sprawdz bledy kompilacji
if (compile_result == GL_FALSE)
{
int info_log_length = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> shader_log(info_log_length);
glGetShaderInfoLog(shader, info_log_length, NULL, &shader_log[0]);
std::cout << "ERROR compiling shader: " << shaderName << std::endl << &shader_log[0] << std::endl;
return 0;
}
return shader;
}
GLuint Shader_Loader::CreateProgram(char* vertexShaderFilename,
char* fragmentShaderFilename)
{
//wczytaj shadery
std::string vertex_shader_code = ReadShader(vertexShaderFilename);
std::string fragment_shader_code = ReadShader(fragmentShaderFilename);
GLuint vertex_shader = CreateShader(GL_VERTEX_SHADER, vertex_shader_code, "vertex shader");
GLuint fragment_shader = CreateShader(GL_FRAGMENT_SHADER, fragment_shader_code, "fragment shader");
int link_result = 0;
//stworz shader
GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &link_result);
//sprawdz bledy linkowania
if (link_result == GL_FALSE)
{
int info_log_length = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> program_log(info_log_length);
glGetProgramInfoLog(program, info_log_length, NULL, &program_log[0]);
std::cout << "Shader Loader : LINK ERROR" << std::endl << &program_log[0] << std::endl;
return 0;
}
glDetachShader(program, vertex_shader);
glDetachShader(program, fragment_shader);
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
return program;
}
void Shader_Loader::DeleteProgram( GLuint program )
{
glDeleteProgram(program);
}

29
cw 1/src/Shader_Loader.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include "glew.h"
#include "freeglut.h"
#include <iostream>
namespace Core
{
class Shader_Loader
{
private:
std::string ReadShader(char *filename);
GLuint CreateShader(GLenum shaderType,
std::string source,
char* shaderName);
public:
Shader_Loader(void);
~Shader_Loader(void);
GLuint CreateProgram(char* VertexShaderFilename,
char* FragmentShaderFilename);
void DeleteProgram(GLuint program);
};
}

56
cw 1/src/ex_1_1.hpp Normal file
View File

@ -0,0 +1,56 @@
#pragma once
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "Shader_Loader.h"
#include "Render_Utils.h"
// funkcja renderujaca scene
void renderScene(GLFWwindow* window)
{
// ZADANIE: Przesledz kod i komentarze
// ZADANIE: Zmien kolor tla sceny, przyjmujac zmiennoprzecinkowy standard RGBA
glClearColor(1.0f, 0.3f, 0.3f, 1.0f);
//ZADAMOE 1b*
float time = glfwGetTime();
glClearColor(glm::sin(time), glm::cos(time), 0.3f, 1.0f);
//ZADAMOE 1b* END
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Powinno byc wywolane po kazdej klatce
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
}
void shutdown(GLFWwindow* window)
{
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

74
cw 1/src/ex_1_2.hpp Normal file
View File

@ -0,0 +1,74 @@
#pragma once
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "Shader_Loader.h"
#include "Render_Utils.h"
GLuint program; // Shader ID
GLuint triangleVAO;
GLuint squareVAO;
Core::Shader_Loader shaderLoader;
void renderScene(GLFWwindow* window)
{
glClearColor(0.5f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Aktywowanie shadera
glUseProgram(program);
//wywolaj funkcje Core::drawVAO z render utils z parametrem wejściowym GLuint triangleVAO
Core::drawVAO(triangleVAO, 3);
// Wylaczenie shadera
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
program = shaderLoader.CreateProgram("shaders/shader_1_1.vert", "shaders/shader_1_1.frag");
//stworz tablice wierzcholkow i zaladuj je do GPU za pomoca funkcji initVAO, wynik zapisz w triangleVAO
float triangle[]={
-0.5, -0.5, 0, 1,
0.5, -0.5, 0, 1,
-0.5, 0.5, 0, 1,
};
triangleVAO = Core::initVAO(triangle, 3, 4);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

78
cw 1/src/ex_1_3.hpp Normal file
View File

@ -0,0 +1,78 @@
#pragma once
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "Shader_Loader.h"
#include "Render_Utils.h"
GLuint program; // Shader ID
GLuint quadVAO;
Core::Shader_Loader shaderLoader;
void renderScene(GLFWwindow* window)
{
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Aktywowanie shadera
glUseProgram(program);
//wywolaj funkcje drawVAOIndexed na quadVAO
Core::drawVAOIndexed(quadVAO, 6);
// Wylaczenie shadera
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
program = shaderLoader.CreateProgram("shaders/shader_1_1.vert", "shaders/shader_1_1.frag");
//Stworz czworokat przy uzyciu 4 wierzcholkow i 6 indeksow (typ: const int []) zaladuj go do za pomoca initVAOIndexed do quadVAO
float quad[] = {
-0.5, -0.5, 0, 1,
0.5, -0.5, 0, 1,
0.5, 0.5, 0, 1,
-0.5, 0.5, 0, 1,
};
unsigned int quadIndexes[] = {
0, 1, 3,
1, 2, 3
};
quadVAO = Core::initVAOIndexed(quad, quadIndexes, 4, 4, 6);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

100
cw 1/src/ex_1_4.hpp Normal file
View File

@ -0,0 +1,100 @@
#pragma once
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "Shader_Loader.h"
#include "Render_Utils.h"
GLuint program; // Shader ID
GLuint quadVAO;
Core::Shader_Loader shaderLoader;
void renderScene(GLFWwindow* window)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
// Zmienna "time" przechowuje czas ktory uplynal od uruchomienia aplikacji
float time = glfwGetTime();
glUseProgram(program);
// "translation" jest automatycznie zainicjalizowana macierza 4x4
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// ! Macierz translation jest definiowana wierszowo dla poprawy czytelnosci. OpenGL i GLM domyslnie stosuje macierze kolumnowe, dlatego musimy ja transponowac !
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
glm::mat4 translation =
{ 1,0,0,0,
0,1,0,sin(time)/2.0,
0,0,1,0,
0,0,0,1 };
translation = glm::transpose(translation);
// ZADANIE: Narysuj ruszajacy sie czworokat
//
// Uzyj zmiennej "time" do zdefiniowania macierzy translacji w taki sposob, aby czworokat przesuwal sie w gore i w dol ekranu (wartosci wspolrzednej y powinny zmieniac sie pomiedzy -0.5 i 0.5)
// Wykorzystaj funkcje sinus: sin(float x)
Core::drawVAOIndexed(quadVAO, 6);
// glUniformMatrix4fv przekazuje macierz "translation" do GPU i powiazuje ja w shaderze ze zmienna typu mat4 o nazwie "transformation"
// Shader uzywa tej macierzy to transformacji wierzcholkow podczas renderowania
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&translation);
// Uzyj kodu z poprzednich cwiczen do narysowania czworokata
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
program = shaderLoader.CreateProgram("shaders/shader_1_2.vert", "shaders/shader_1_2.frag");
//Przekopiuj kod do ladowania z poprzedniego zadania
float quad[] = {
-0.5, -0.5, 0, 1,
0.5, -0.5, 0, 1,
0.5, 0.5, 0, 1,
-0.5, 0.5, 0, 1,
};
unsigned int quadIndexes[] = {
0, 1, 3,
1, 2, 3
};
quadVAO = Core::initVAOIndexed(quad, quadIndexes, 4, 4, 6);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

114
cw 1/src/ex_1_5.hpp Normal file
View File

@ -0,0 +1,114 @@
#pragma once
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "Shader_Loader.h"
#include "Render_Utils.h"
GLuint program; // Shader ID
GLuint quadVAO;
Core::Shader_Loader shaderLoader;
void renderScene(GLFWwindow* window)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
// Zmienna "time" przechowuje czas ktory uplynal od uruchomienia aplikacji
float time = glfwGetTime();
glUseProgram(program);
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// ! Macierz translation jest definiowana wierszowo dla poprawy czytelnosci. OpenGL i GLM domyslnie stosuje macierze kolumnowe, dlatego musimy ja transponowac !
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
double alpha = time;
glm::mat4 rotation =
{ glm::cos(alpha),-glm::sin(alpha),0,0,
-glm::sin(alpha),-glm::cos(alpha),0,0,
0,0,1,0,
0,0,0,1 };
// ZADANIE: Narysuj dwa czworokaty, jeden ruszajacy sie, drugi obracajacy sie
// Do rysowania ruszajacego sie czworokatu mozesz uzyc kodu z poprzedniego zadania, zmodyfikuj tylko macierz translacji, zeby byly obok siebie, nie jeden na drugim
// Uzyj zmiennej "time" do zdefiniowania takiej macierzy rotacji, aby czworokat obracal sie wokol srodka (znajdz odpowiednia macierz 4x4 w internecie)
// Kat obrotu podajemy w radianach
Core::drawVAOIndexed(quadVAO, 6);
rotation = glm::transpose(rotation);
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&rotation);
// Uzyj kodu z poprzednich cwiczen do narysowania czworokata
glm::mat4 translation =
{ 1,0,0,0.5,
0,1,0,sin(time) / 2.0,
0,0,1,0,
0,0,0,1 };
translation = glm::transpose(translation);
// ZADANIE: Narysuj ruszajacy sie czworokat
//
// Uzyj zmiennej "time" do zdefiniowania macierzy translacji w taki sposob, aby czworokat przesuwal sie w gore i w dol ekranu (wartosci wspolrzednej y powinny zmieniac sie pomiedzy -0.5 i 0.5)
// Wykorzystaj funkcje sinus: sin(float x)
Core::drawVAOIndexed(quadVAO, 6);
// glUniformMatrix4fv przekazuje macierz "translation" do GPU i powiazuje ja w shaderze ze zmienna typu mat4 o nazwie "transformation"
// Shader uzywa tej macierzy to transformacji wierzcholkow podczas renderowania
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&translation);
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
program = shaderLoader.CreateProgram("shaders/shader_1_2.vert", "shaders/shader_1_2.frag");
//Przekopiuj kod do ladowania z poprzedniego zadania
float quad[] = {
-0.5, -0.5, 0, 1,
0.5, -0.5, 0, 1,
0.5, 0.5, 0, 1,
-0.5, 0.5, 0, 1,
};
unsigned int quadIndexes[] = {
0, 1, 3,
1, 2, 3
};
quadVAO = Core::initVAOIndexed(quad, quadIndexes, 4, 4, 6);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

112
cw 1/src/ex_1_6.hpp Normal file
View File

@ -0,0 +1,112 @@
#pragma once
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "Shader_Loader.h"
#include "Render_Utils.h"
GLuint program; // Shader ID
GLuint quadVAO;
Core::Shader_Loader shaderLoader;
void renderScene(GLFWwindow* window)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
// Zmienna "time" przechowuje czas ktory uplynal od uruchomienia aplikacji
float time = glfwGetTime();
glUseProgram(program);
// ZADANIE: Wyswietl czworokat, ktory jednoczesnie przesuwa sie i obraca.
//
// Uzyj kodu do translacji i rotacji czworokatu z poprzednich zadan
//
// Stworz taka macierz transformacji, ktora powoduje ze czworokat przesuwa sie w gore i w dol ekranu, jednoczesnie obracajac sie.
// Wyslij stworzona macierz do GPU za pomoca funkcji glUniformMatrix4fv zamiast macierzy "translation" i "rotation" z poprzednich zadan
glm::mat4 translation =
{ 1,0,0,0,
0,1,0,sin(time) / 2.0,
0,0,1,0,
0,0,0,1 };
translation = glm::transpose(translation);
double alpha = time;
glm::mat4 rotation =
{ glm::cos(alpha),-glm::sin(alpha),0,0,
-glm::sin(alpha),-glm::cos(alpha),0,0,
0,0,1,0,
0,0,0,1 };
rotation = glm::transpose(rotation);
glm::mat4 res = translation * rotation;
// ZADANIE: Narysuj ruszajacy sie czworokat
//
// Uzyj zmiennej "time" do zdefiniowania macierzy translacji w taki sposob, aby czworokat przesuwal sie w gore i w dol ekranu (wartosci wspolrzednej y powinny zmieniac sie pomiedzy -0.5 i 0.5)
// Wykorzystaj funkcje sinus: sin(float x)
Core::drawVAOIndexed(quadVAO, 6);
// glUniformMatrix4fv przekazuje macierz "translation" do GPU i powiazuje ja w shaderze ze zmienna typu mat4 o nazwie "transformation"
// Shader uzywa tej macierzy to transformacji wierzcholkow podczas renderowania
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&res);
// Uzyj kodu z poprzednich cwiczen do narysowania czworokata
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
program = shaderLoader.CreateProgram("shaders/shader_1_2.vert", "shaders/shader_1_2.frag");
//Przekopiuj kod do ladowania z poprzedniego zadania
float quad[] = {
-0.5, -0.5, 0, 1,
0.5, -0.5, 0, 1,
0.5, 0.5, 0, 1,
-0.5, 0.5, 0, 1,
};
unsigned int quadIndexes[] = {
0, 1, 3,
1, 2, 3
};
quadVAO = Core::initVAOIndexed(quad, quadIndexes, 4, 4, 6);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

160
cw 1/src/ex_1_7.hpp Normal file
View File

@ -0,0 +1,160 @@
#pragma once
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "ext.hpp"
#include <vector>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "gtc/matrix_transform.hpp"
#include "gtc/type_ptr.hpp"
GLuint program; // Shader ID
GLuint quadVAO;
glm::vec3 quadPos;
float alpha = 0;
Core::Shader_Loader shaderLoader;
std::vector<glm::vec3> quadsPositions;
void renderScene(GLFWwindow* window)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
float time = glfwGetTime();
glUseProgram(program);
glm::mat4 transformation = glm::mat4(1.0f);
/*
//Zad 5
transformation = glm::translate(transformation, glm::vec3(0.0f, (float)glm::sin(time), 0.0f));
transformation = glm::rotate(transformation, time, glm::vec3(0.0, 0.0, 1.0));
*/
//Zad 7b*
for (const glm::vec3& pos : quadsPositions) {
glm::mat4 currTransform = glm::mat4(1.0f);
currTransform = glm::translate(currTransform, pos);
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&currTransform);
Core::drawVAOIndexed(quadVAO, 6);
}
//Zad 7b* END
// Zad 6
transformation = glm::translate(transformation, quadPos);
//Zad 6b*
glm::mat4 rotation =
{ glm::cos(alpha),-glm::sin(alpha),0,0,
-glm::sin(alpha),-glm::cos(alpha),0,0,
0,0,1,0,
0,0,0,1 };
rotation = glm::transpose(rotation);
transformation = transformation * rotation;
//Zad 6b* END
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
Core::drawVAOIndexed(quadVAO, 6);
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void cursor_position_callback(GLFWwindow* window, double xpos, double ypos)
{
//zad 7
quadPos = glm::vec3(2 * xpos / 500 - 1, -(2*ypos/500 - 1), 0.0f);
}
void mouse_button_callback(GLFWwindow* window, int button, int action, int mods)
{
double xpos, ypos;
glfwGetCursorPos(window, &xpos, &ypos);
printf("%f,%f\n", xpos, ypos);
if (button == GLFW_MOUSE_BUTTON_1 && action == GLFW_PRESS) {
quadsPositions.push_back(glm::vec3(2 * xpos / 500 - 1, -(2 * ypos / 500 - 1), 0.0f));
}
}
void init(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, cursor_position_callback);
glfwSetMouseButtonCallback(window, mouse_button_callback);
glfwSetInputMode(window, GLFW_STICKY_MOUSE_BUTTONS, GLFW_TRUE);
program = shaderLoader.CreateProgram("shaders/shader_1_2.vert", "shaders/shader_1_2.frag");
float points[] = {
-0.1,-0.1,0.0,1.0,
0.1,-0.1,0.0,1.0,
0.1, 0.1,0.0,1.0,
-0.1, 0.1,0.0,1.0,
};
unsigned int indices[] = {
0,1,3,
1,2,3,
};
quadVAO = Core::initVAOIndexed(points, indices, 4, 4, 6);
//Przekopiuj kod do ladowania z poprzedniego zadania
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(window, true);
}
//Zad 6
if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS) {
quadPos += glm::vec3(0.0f, 0.001f, 0.0f);
}
if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS) {
quadPos += glm::vec3(0.0f, -0.001f, 0.0f);
}
if (glfwGetKey(window, GLFW_KEY_RIGHT) == GLFW_PRESS) {
quadPos += glm::vec3(0.001f, 0.0f, 0.0f);
}
if (glfwGetKey(window, GLFW_KEY_LEFT) == GLFW_PRESS) {
quadPos += glm::vec3(-0.001f, 0.0f, 0.0f);
}
//zad 6 end
//zad 6b*
if (glfwGetKey(window, GLFW_KEY_O) == GLFW_PRESS) {
alpha += 0.001;
}
if (glfwGetKey(window, GLFW_KEY_P) == GLFW_PRESS) {
alpha -= 0.001;
}
//zad 6b* END
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

45
cw 1/src/main.cpp Normal file
View File

@ -0,0 +1,45 @@
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "ex_1_1.hpp"
int main(int argc, char ** argv)
{
// inicjalizacja glfw
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// tworzenie okna za pomocą glfw
GLFWwindow* window = glfwCreateWindow(500, 500, "FirstWindow", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// ladowanie OpenGL za pomoca glew
glewInit();
glViewport(0, 0, 500, 500);
init(window);
// uruchomienie glownej petli
renderLoop(window);
shutdown(window);
glfwTerminate();
return 0;
}

291
cw 1/src/objload.h Normal file
View File

@ -0,0 +1,291 @@
/* Copyright (c) 2012, Gerhard Reitmayr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
#ifndef OBJLOAD_H_
#define OBJLOAD_H_
#include <algorithm>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <set>
#include <vector>
namespace obj {
struct Model {
std::vector<float> vertex; //< 3 * N entries
std::vector<float> texCoord; //< 2 * N entries
std::vector<float> normal; //< 3 * N entries
std::map<std::string, std::vector<unsigned short> > faces; //< assume triangels and uniform indexing
};
struct ObjModel {
struct FaceVertex {
FaceVertex() : v(-1), t(-1), n(-1) {}
int v, t, n;
bool operator<( const FaceVertex & other ) const;
bool operator==( const FaceVertex & other ) const;
};
typedef std::pair<std::vector<FaceVertex>, std::vector<unsigned> > FaceList;
std::vector<float> vertex; //< 3 * N entries
std::vector<float> texCoord; //< 2 * N entries
std::vector<float> normal; //< 3 * N entries
std::map<std::string, FaceList > faces;
};
inline ObjModel parseObjModel( std::istream & in);
inline void tesselateObjModel( ObjModel & obj);
inline ObjModel tesselateObjModel( const ObjModel & obj );
inline Model convertToModel( const ObjModel & obj );
inline Model loadModel( std::istream & in );
inline Model loadModelFromString( const std::string & in );
inline Model loadModelFromFile( const std::string & in );
inline std::ostream & operator<<( std::ostream & out, const Model & m );
inline std::ostream & operator<<( std::ostream & out, const ObjModel::FaceVertex & f);
// ---------------------------- Implementation starts here -----------------------
inline bool ObjModel::FaceVertex::operator<( const ObjModel::FaceVertex & other ) const {
return (v < other.v) || (v == other.v && t < other.t ) || (v == other.v && t == other.t && n < other.n);
}
inline bool ObjModel::FaceVertex::operator==( const ObjModel::FaceVertex & other ) const {
return (v == other.v && t == other.t && n == other.n);
}
template <typename T>
inline std::istream & operator>>(std::istream & in, std::vector<T> & vec ){
T temp;
if(in >> temp)
vec.push_back(temp);
return in;
}
template <typename T>
inline std::istream & operator>>(std::istream & in, std::set<T> & vec ){
T temp;
if(in >> temp)
vec.insert(temp);
return in;
}
inline std::istream & operator>>( std::istream & in, ObjModel::FaceVertex & f){
if(in >> f.v){
if(in.peek() == '/'){
in.get();
in >> f.t;
in.clear();
if(in.peek() == '/'){
in.get();
in >> f.n;
in.clear();
}
}
in.clear();
--f.v;
--f.t;
--f.n;
}
// std::cout << f << std::endl;
return in;
}
ObjModel parseObjModel( std::istream & in ){
char line[1024];
std::string op;
std::istringstream line_in;
std::set<std::string> groups;
groups.insert("default");
ObjModel data;
while(in.good()){
in.getline(line, 1023);
line_in.clear();
line_in.str(line);
if(!(line_in >> op))
continue;
if(op == "v")
line_in >> data.vertex >> data.vertex >> data.vertex;
else if(op == "vt")
line_in >> data.texCoord >> data.texCoord >> data.texCoord;
else if(op == "vn")
line_in >> data.normal >> data.normal >> data.normal;
else if(op == "g"){
groups.clear();
while(line_in >> groups) ;
groups.insert("default");
}
else if(op == "f") {
std::vector<ObjModel::FaceVertex> list;
while(line_in >> list) ;
for(std::set<std::string>::const_iterator g = groups.begin(); g != groups.end(); ++g){
ObjModel::FaceList & fl = data.faces[*g];
fl.second.push_back(fl.first.size());
fl.first.insert(fl.first.end(), list.begin(), list.end());
}
}
}
for(std::map<std::string, ObjModel::FaceList>::iterator g = data.faces.begin(); g != data.faces.end(); ++g){
ObjModel::FaceList & fl = g->second;
fl.second.push_back(fl.first.size());
}
return data;
}
inline void tesselateObjModel( std::vector<ObjModel::FaceVertex> & input, std::vector<unsigned> & input_start){
std::vector<ObjModel::FaceVertex> output;
std::vector<unsigned> output_start;
output.reserve(input.size());
output_start.reserve(input_start.size());
for(std::vector<unsigned>::const_iterator s = input_start.begin(); s != input_start.end() - 1; ++s){
const unsigned size = *(s+1) - *s;
if(size > 3){
const ObjModel::FaceVertex & start_vertex = input[*s];
for( int i = 1; i < (int)size-1; ++i){
output_start.push_back(output.size());
output.push_back(start_vertex);
output.push_back(input[*s+i]);
output.push_back(input[*s+i+1]);
}
} else {
output_start.push_back(output.size());
output.insert(output.end(), input.begin() + *s, input.begin() + *(s+1));
}
}
output_start.push_back(output.size());
input.swap(output);
input_start.swap(output_start);
}
void tesselateObjModel( ObjModel & obj){
for(std::map<std::string, ObjModel::FaceList>::iterator g = obj.faces.begin(); g != obj.faces.end(); ++g){
ObjModel::FaceList & fl = g->second;
tesselateObjModel(fl.first, fl.second);
}
}
Model convertToModel( const ObjModel & obj ) {
// insert all face vertices into a vector and make unique
std::vector<ObjModel::FaceVertex> unique(obj.faces.find("default")->second.first);
std::sort(unique.begin(), unique.end());
unique.erase( std::unique(unique.begin(), unique.end()), unique.end());
// build a new model with repeated vertices/texcoords/normals to have single indexing
Model model;
for(std::vector<ObjModel::FaceVertex>::const_iterator f = unique.begin(); f != unique.end(); ++f){
model.vertex.insert(model.vertex.end(), obj.vertex.begin() + 3*f->v, obj.vertex.begin() + 3*f->v + 3);
if(!obj.texCoord.empty()){
const int index = (f->t > -1) ? f->t : f->v;
model.texCoord.insert(model.texCoord.end(), obj.texCoord.begin() + 2*index, obj.texCoord.begin() + 2*index + 2);
}
if(!obj.normal.empty()){
const int index = (f->n > -1) ? f->n : f->v;
model.normal.insert(model.normal.end(), obj.normal.begin() + 3*index, obj.normal.begin() + 3*index + 3);
}
}
// look up unique index and transform face descriptions
for(std::map<std::string, ObjModel::FaceList>::const_iterator g = obj.faces.begin(); g != obj.faces.end(); ++g){
const std::string & name = g->first;
const ObjModel::FaceList & fl = g->second;
std::vector<unsigned short> & v = model.faces[g->first];
v.reserve(fl.first.size());
for(std::vector<ObjModel::FaceVertex>::const_iterator f = fl.first.begin(); f != fl.first.end(); ++f){
const unsigned short index = std::distance(unique.begin(), std::lower_bound(unique.begin(), unique.end(), *f));
v.push_back(index);
}
}
return model;
}
ObjModel tesselateObjModel( const ObjModel & obj ){
ObjModel result = obj;
tesselateObjModel(result);
return result;
}
Model loadModel( std::istream & in ){
ObjModel model = parseObjModel(in);
tesselateObjModel(model);
return convertToModel(model);
}
Model loadModelFromString( const std::string & str ){
std::istringstream in(str);
return loadModel(in);
}
Model loadModelFromFile( const std::string & str) {
std::ifstream in(str.c_str());
return loadModel(in);
}
inline std::ostream & operator<<( std::ostream & out, const ObjModel::FaceVertex & f){
out << f.v << "\t" << f.t << "\t" << f.n;
return out;
}
std::ostream & operator<<( std::ostream & out, const Model & m ){
if(!m.vertex.empty()){
out << "vertex\n";
for(int i = 0; i < (int)m.vertex.size(); ++i)
out << m.vertex[i] << (((i % 3) == 2)?"\n":"\t");
}
if(!m.texCoord.empty()){
out << "texCoord\n";
for(int i = 0; i < (int)m.texCoord.size(); ++i)
out << m.texCoord[i] << (((i % 2) == 1)?"\n":"\t");
}
if(!m.normal.empty()){
out << "normal\n";
for(int i = 0; i < (int)m.normal.size(); ++i)
out << m.normal[i] << (((i % 3) == 2)?"\n":"\t");
}
if(!m.faces.empty()){
out << "faces\t";
for(std::map<std::string, std::vector<unsigned short> >::const_iterator g = m.faces.begin(); g != m.faces.end(); ++g){
out << g->first << " ";
}
out << "\n";
// for(int i = 0; i < m.face.size(); ++i)
// out << m.face[i] << (((i % 3) == 2)?"\n":"\t");
}
return out;
}
} // namespace obj
#endif // OBJLOAD_H_

View File

@ -0,0 +1,30 @@
#version 430 core
uniform float time;
uniform vec4 background_color;
flat in vec4 color;
out vec4 out_color;
in vec4 pos_local;
in vec4 pos_global;
void main()
{
// out_color = color;
// out_color = color / time;
// out_color = mix(color, background_color, abs(sin(time / 4.0)));
//zad 7
// out_color = pos_local;
// out_color = pos_global;
//zad 8*
vec4 final_color = color;
float stripe_width = 0.04;
float stripe_every = 0.1;
float stripe = mod(pos_local.x + time * 0.02, stripe_every);
//float stripe = mod(pos_local.x, stripe_every);
//final_color.rgb *= smoothstep(0.02, 0.2, stripe);
float jump_effect = step(stripe, stripe_every - stripe_width) * step(stripe_width, stripe);
final_color.rgb *= jump_effect;
out_color = final_color;
}

View File

@ -0,0 +1,18 @@
#version 430 core
layout(location = 0) in vec4 vertexPosition;
layout(location = 1) in vec4 vertexColor;
uniform mat4 transformation;
flat out vec4 color;
out vec4 pos_local;
out vec4 pos_global;
void main()
{
color = vertexColor;
gl_Position = transformation * vertexPosition;
pos_local = vertexPosition;
pos_global = transformation * vertexPosition;
}

View File

@ -0,0 +1,16 @@
#version 430 core
out vec4 fragColor;
in float hue;
out vec4 out_color;
vec3 hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
void main()
{
out_color = vec4(hsv2rgb(vec3(hue,1,1)), 1.0);
}

View File

@ -0,0 +1,11 @@
#version 430 core
layout(location = 0) in vec4 vertexPosition;
layout(location = 1) in float vertexHue;
out float hue;
void main()
{
hue = vertexHue;
gl_Position = vertexPosition;
}

View File

@ -0,0 +1,7 @@
#version 430 core
out vec4 out_color;
void main()
{
out_color = color;
}

View File

@ -0,0 +1,12 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec2 vertexTexCoord;
layout(location = 2) in vec3 vertexNormal;
uniform mat4 transformation;
void main()
{
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,7 @@
#version 430 core
out vec4 out_color;
void main()
{
out_color = color;
}

View File

@ -0,0 +1,13 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec2 vertexTexCoord;
layout(location = 2) in vec3 vertexNormal;
uniform mat4 transformation;
uniform mat4 model;
void main()
{
gl_Position = transformation * model * vec4(vertexPosition, 1.0);
}

55
cw 2/src/Box.cpp Normal file
View File

@ -0,0 +1,55 @@
// dane 36 wierzcholkow i kolorow opisujace model pudelka
const float box[] = {
// points colors
0.25f, 0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.5f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.5f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.5f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.2f, 0.0f, 0.2f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.2f, 0.0f, 0.2f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.2f, 0.0f, 0.2f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.2f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.2f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
};

32
cw 2/src/Camera.cpp Normal file
View File

@ -0,0 +1,32 @@
#include "Camera.h"
glm::mat4 Core::createPerspectiveMatrix(float zNear, float zFar)
{
const float frustumScale = 1.0f;
glm::mat4 perspective;
perspective[0][0] = frustumScale;
perspective[1][1] = frustumScale;
perspective[2][2] = (zFar + zNear) / (zNear - zFar);
perspective[3][2] = (2 * zFar * zNear) / (zNear - zFar);
perspective[2][3] = -1;
perspective[3][3] = 0;
return perspective;
}
glm::mat4 Core::createViewMatrix( glm::vec3 position, glm::vec3 forward, glm::vec3 up )
{
glm::vec3 side = glm::cross(forward, up);
// Trzeba pamietac o minusie przy ustawianiu osi Z kamery.
// Wynika to z tego, ze standardowa macierz perspektywiczna zaklada, ze "z przodu" jest ujemna (a nie dodatnia) czesc osi Z.
glm::mat4 cameraRotation;
cameraRotation[0][0] = side.x; cameraRotation[1][0] = side.y; cameraRotation[2][0] = side.z;
cameraRotation[0][1] = up.x; cameraRotation[1][1] = up.y; cameraRotation[2][1] = up.z;
cameraRotation[0][2] = -forward.x; cameraRotation[1][2] = -forward.y; cameraRotation[2][2] = -forward.z;
glm::mat4 cameraTranslation;
cameraTranslation[3] = glm::vec4(-position, 1.0f);
return cameraRotation * cameraTranslation;
}

14
cw 2/src/Camera.h Normal file
View File

@ -0,0 +1,14 @@
#pragma once
#include "glm.hpp"
namespace Core
{
glm::mat4 createPerspectiveMatrix(float zNear = 0.1f, float zFar = 100.0f);
// position - pozycja kamery
// forward - wektor "do przodu" kamery (jednostkowy)
// up - wektor "w gore" kamery (jednostkowy)
// up i forward musza byc ortogonalne!
glm::mat4 createViewMatrix(glm::vec3 position, glm::vec3 forward, glm::vec3 up);
}

36
cw 2/src/Render_Utils.cpp Normal file
View File

@ -0,0 +1,36 @@
#include "Render_Utils.h"
#include <algorithm>
#include "glew.h"
#include "freeglut.h"
void Core::DrawContext(Core::RenderContext& context)
{
glBindVertexArray(context.vertexArray);
glDrawElements(
GL_TRIANGLES, // mode
context.size, // count
GL_UNSIGNED_SHORT, // type
(void*)0 // element array buffer offset
);
glBindVertexArray(0);
}
void Core::deleteVAO(GLuint VAO) {
GLint nAttr = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &nAttr);
glBindVertexArray(VAO);
for (int iAttr = 0; iAttr < nAttr; ++iAttr) {
GLint vboId = 0;
glGetVertexAttribiv(iAttr, GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, &vboId);
if (vboId > 0) {
GLuint _v = GLuint(vboId);
glDeleteBuffers(1, &_v);
}
}
glDeleteVertexArrays(1, &VAO);
}

72
cw 2/src/Render_Utils.h Normal file
View File

@ -0,0 +1,72 @@
#pragma once
#include "glm.hpp"
#include "glew.h"
//#include "objload.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <vector>
#include <iostream>
#define BUFFER_OFFSET(i) ((void*)(i))
namespace Core
{
struct RenderContext {
GLuint vertexArray;
GLuint vertexBuffer;
GLuint vertexIndexBuffer;
unsigned int size = 0;
void initFromAiMesh(aiMesh* mesh) {
vertexArray = 0;
vertexBuffer = 0;
vertexIndexBuffer = 0;
std::vector<float> textureCoord;
std::vector<unsigned int> indices;
//tex coord must be converted to 2d vecs
for (unsigned int i = 0; i < mesh->mNumVertices; i++)
{
if (mesh->mTextureCoords[0] != nullptr) {
textureCoord.push_back(mesh->mTextureCoords[0][i].x);
textureCoord.push_back(mesh->mTextureCoords[0][i].y);
}
else {
textureCoord.push_back(0.0f);
textureCoord.push_back(0.0f);
}
}
if (mesh->mTextureCoords[0] == nullptr) {
std::cout << "no uv coords\n";
}
for (unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// retrieve all indices of the face and store them in the indices vector
for (unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
unsigned int vertexDataBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexNormalBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexTexBufferSize = sizeof(float) * mesh->mNumVertices * 2;
}
~RenderContext() {
glDeleteBuffers(1, &vertexBuffer);
glDeleteBuffers(1, &vertexIndexBuffer);
glDeleteVertexArrays(1, &vertexArray);
}
};
void DrawContext(RenderContext& context);
void deleteVAO(GLuint VAO);
}

102
cw 2/src/Shader_Loader.cpp Normal file
View File

@ -0,0 +1,102 @@
#include "Shader_Loader.h"
#include<iostream>
#include<fstream>
#include<vector>
using namespace Core;
Shader_Loader::Shader_Loader(void){}
Shader_Loader::~Shader_Loader(void){}
std::string Shader_Loader::ReadShader(char *filename)
{
std::string shaderCode;
std::ifstream file(filename, std::ios::in);
if (!file.good())
{
std::cout << "Can't read file " << filename << std::endl;
std::terminate();
}
file.seekg(0, std::ios::end);
shaderCode.resize((unsigned int)file.tellg());
file.seekg(0, std::ios::beg);
file.read(&shaderCode[0], shaderCode.size());
file.close();
return shaderCode;
}
GLuint Shader_Loader::CreateShader(GLenum shaderType, std::string
source, char* shaderName)
{
int compile_result = 0;
GLuint shader = glCreateShader(shaderType);
const char *shader_code_ptr = source.c_str();
const int shader_code_size = source.size();
glShaderSource(shader, 1, &shader_code_ptr, &shader_code_size);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &compile_result);
//sprawdz bledy
if (compile_result == GL_FALSE)
{
int info_log_length = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> shader_log(info_log_length);
glGetShaderInfoLog(shader, info_log_length, NULL, &shader_log[0]);
std::cout << "ERROR compiling shader: " << shaderName << std::endl << &shader_log[0] << std::endl;
return 0;
}
return shader;
}
GLuint Shader_Loader::CreateProgram(char* vertexShaderFilename,
char* fragmentShaderFilename)
{
//wczytaj shadery
std::string vertex_shader_code = ReadShader(vertexShaderFilename);
std::string fragment_shader_code = ReadShader(fragmentShaderFilename);
GLuint vertex_shader = CreateShader(GL_VERTEX_SHADER, vertex_shader_code, "vertex shader");
GLuint fragment_shader = CreateShader(GL_FRAGMENT_SHADER, fragment_shader_code, "fragment shader");
int link_result = 0;
//stworz shader
GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &link_result);
//sprawdz bledy w linkerze
if (link_result == GL_FALSE)
{
int info_log_length = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> program_log(info_log_length);
glGetProgramInfoLog(program, info_log_length, NULL, &program_log[0]);
std::cout << "Shader Loader : LINK ERROR" << std::endl << &program_log[0] << std::endl;
return 0;
}
glDetachShader(program, vertex_shader);
glDetachShader(program, fragment_shader);
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
return program;
}
void Shader_Loader::DeleteProgram( GLuint program )
{
glDeleteProgram(program);
}

29
cw 2/src/Shader_Loader.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include "glew.h"
#include "freeglut.h"
#include <iostream>
namespace Core
{
class Shader_Loader
{
private:
std::string ReadShader(char *filename);
GLuint CreateShader(GLenum shaderType,
std::string source,
char* shaderName);
public:
Shader_Loader(void);
~Shader_Loader(void);
GLuint CreateProgram(char* VertexShaderFilename,
char* FragmentShaderFilename);
void DeleteProgram(GLuint program);
};
}

120
cw 2/src/ex_2_1a.hpp Normal file
View File

@ -0,0 +1,120 @@
#pragma once
#include "glew.h"
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include <GLFW/glfw3.h>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "Box.cpp"
GLuint program;
Core::Shader_Loader shaderLoader;
glm::vec4 background_color = glm::vec4(0.3, 0.3, 0.5, 1.0);
GLuint VAO,VBO;
void renderScene(GLFWwindow* window)
{
float time = glfwGetTime();
//glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glClearColor(background_color[0], background_color[1], background_color[2], background_color[3]);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// ZADANIE: W zalaczonym wyzej pliku Box.cpp znajduja sie tablice pozycji i kolorow wierzcholkow prostopadloscianu. Przesun go o wektor (0.5, 0.5, -0.2) i wyswietl go.
//
// Do shadera uzytego w tym zadaniu nalezy przeslac nie tylko pozycje, ale rowniez kolory wierzcholkow.
// W funkcji init należy przesłać pozycje i kolory do GPU
//Zad 5
glUseProgram(program);
glUniform1f(glGetUniformLocation(program, "time"), time);
//zad 6*
glUniform4fv(glGetUniformLocation(program, "background_color"), 1, (GLfloat*)&background_color);
glm::mat4 transformation = glm::eulerAngleXYZ(1.0f, 0.f, 50.f);
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
// Powiąż stworzone VAO za pomocą funkcji glBindVertexArray
glBindVertexArray(VAO);
// wykorzystaj glDrawArrays do narysowania prostopadłościanu
glDrawArrays(GL_TRIANGLES, 0, 36);
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window)
{
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glEnable(GL_DEPTH_TEST);
program = shaderLoader.CreateProgram("shaders/shader_2_1.vert", "shaders/shader_2_1.frag");
// Dokładny opis działania funkcji z poniższych punktów można znaleźć na slajdach z wykładu, w dokumentacji https://www.khronos.org/registry/OpenGL-Refpages/gl4/ funkcje są opisane także na stronach https://learnopengl.com/Getting-started/Hello-Triangle https://learnopengl.com/Getting-started/Shaders oraz https://open.gl/drawing
// W tablicy box są pozycje i kolory kostki, celem zajęć jest narysowanie tej kostki
// Zainicjalizuj VertexArrayObject (VAO) i zapisz w nim atrybuty prostopadłościanu
// I Stwórz VAO
// 1. Stwórz nowy VAO za pomocą glGenVertexArrays i przypisz jego adres do zmiennej globalnej
glGenVertexArrays(1, &VAO);
// 2. Powiąż stworzone VAO za pomocą funkcji glBindVertexArray
glBindVertexArray(VAO);
// II Zainicjalizuj VBO
// 3. Stwórz VertexBufferObject do przechowywania pozycji wierzchołków za pomocą funkcji glGenBuffers
glGenBuffers(1, &VBO);
// 4. Powiąż stworzone VBO za pomocą funkcji glBindBuffer(GLenum target, GLuint )
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 5. Zaalokuj w GPU miejsce na tablice box i zaalakokuj ją za pomocą glBufferData
glBufferData(GL_ARRAY_BUFFER, sizeof(box), box, GL_STATIC_DRAW);
//std::cout << sizeof(box);
// II Stwórz definicję danych w buforze
// 6. Aktywuj atrybut powiązany z pozycją wierchołków za pomocą glEnableVertexAttribArray(GLuint index). Indeks jest zapisany w shaderze wierzchołków w 3. lini. Można odpytać shader o indeks za pomocą funkcji glGetAttribLocation(GL uint program, const GLchar *name)
glEnableVertexAttribArray(0);
// 6. Aktywuj atrybut powiązany z kolorem wierchołków za pomocą glEnableVertexAttribArray(GLuint index). Indeks jest zapisany w shaderze wierzchołków w 4. lini. Można odpytać shader o indeks za pomocą funkcji glGetAttribLocation(GL uint program, const GLchar *name)
glEnableVertexAttribArray(1);
// 8. Zdefiniuj jak OpenGL powinien interpretować dane za pomocą glVertexAttribPointer
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), 0);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*) (4 * sizeof(float)));
// w renderScene!
//glBindVertexArray(VAO);
///glDrawArrays(GL_TRIANGLES, 0, 36);
// 9. Uwolnij VAO za pomocą funkcji glBindVertexArray(0)
glBindVertexArray(0);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

116
cw 2/src/ex_2_1b.hpp Normal file
View File

@ -0,0 +1,116 @@
#pragma once
#include "glew.h"
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include <GLFW/glfw3.h>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "Box.cpp"
float points[] = {
0.0f,1.0f,0.f,1.f,
0.7818314824680298f,0.6234898018587336f,0.f,1.f,
0.9749279121818236f,-0.22252093395631434f,0.f,1.f,
0.43388373911755823f,-0.900968867902419f,0.f,1.f,
-0.433883739117558f,-0.9009688679024191f,0.f,1.f,
-0.9749279121818236f,-0.2225209339563146f,0.f,1.f,
-0.7818314824680299f,0.6234898018587334f,0.f,1.f,
};
float hues[] = {
0.0f,
0.7142857142857143f,
0.42857142857142855f,
0.14285714285714285f,
0.8571428571428571f,
0.5714285714285714f,
0.2857142857142857f
};
unsigned int starIndexed[] = {
0, 3, 6, 2, 5, 1, 4
};
GLuint program;
Core::Shader_Loader shaderLoader;
unsigned int VAO;
GLuint VBO, EBO;
void renderScene(GLFWwindow* window)
{
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// ZADANIE: Powyżej w tablicy points znajdują się wierzchołki 7-kąta foremnego, zadanie polega na narysowaniu gwiazdy siedmioramiennej jak na obrazku zad1b.jpg. Do shadera należy przesłać pozycje wierzchołków i ich odcienie z tablicy hues podobnie jak w zadaniu 1a.
// Idealnie rozwiązane zadanie wymaga użycia indeksowania z użyciem Element Buffer Objects oraz trybu rysowania GL_LINE_STRIP
// (dodatkowe) Jedna krawędź przechodzi przez wszystkie odcienie zamiast z czerwonego do magenty. Co to powoduje? W jaki sposób byś to naprawił?
glUseProgram(program);
glBindVertexArray(VAO);
glDrawElements(GL_LINE_STRIP, sizeof(starIndexed), GL_UNSIGNED_INT, 0);
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window)
{
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glEnable(GL_DEPTH_TEST);
program = shaderLoader.CreateProgram("shaders/shader_2_1b.vert", "shaders/shader_2_1b.frag");
glGenVertexArrays(1, &VAO);
glBindVertexArray(VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(points) + sizeof(hues), points, GL_STATIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(starIndexed), starIndexed, GL_STATIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, sizeof(points), sizeof(hues), hues);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void*)(0));
glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 1 * sizeof(float), (void*)(sizeof(points)));
glBindVertexArray(0);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}

107
cw 2/src/ex_2_2.hpp Normal file
View File

@ -0,0 +1,107 @@
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "Camera.h"
#include "Box.cpp"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <string>
GLuint program;
Core::Shader_Loader shaderLoader;
Core::RenderContext shipContext;
Core::RenderContext sphereContext;
float cameraAngle = 0;
glm::vec3 cameraPos = glm::vec3(-5, 0, 0);
glm::vec3 cameraDir;
glm::mat4 createCameraMatrix()
{
cameraDir = glm::vec3(cosf(cameraAngle), 0.0f, sinf(cameraAngle));
glm::vec3 up = glm::vec3(0, 1, 0);
return Core::createViewMatrix(cameraPos, cameraDir, up);
}
void renderScene(GLFWwindow* window)
{
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUseProgram(program);
glm::mat4 camera = createCameraMatrix();
glm::mat4 perspective = Core::createPerspectiveMatrix();
glm::mat4 transformation = perspective * camera;
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void init(GLFWwindow* window)
{
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glEnable(GL_DEPTH_TEST);
program = shaderLoader.CreateProgram("shaders/shader_2_2.vert", "shaders/shader_2_2.frag");
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(window, true);
}
float angleSpeed = 0.1f;
float moveSpeed = 0.1f;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS) {
cameraAngle -= angleSpeed;
}
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS) {
cameraAngle += angleSpeed;
}
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS) {
cameraPos += cameraDir * moveSpeed;
}
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS) {
cameraPos -= cameraDir * moveSpeed;
}
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

47
cw 2/src/main.cpp Normal file
View File

@ -0,0 +1,47 @@
#include "glew.h"
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include <GLFW/glfw3.h>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "ex_2_1a.hpp"
int main(int argc, char** argv)
{
// inicjalizacja glfw
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// tworzenie okna za pomocą glfw
GLFWwindow* window = glfwCreateWindow(500, 500, "FirstWindow", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// ladowanie OpenGL za pomoca glew
glewInit();
glViewport(0, 0, 500, 500);
init(window);
// uruchomienie glownej petli
renderLoop(window);
shutdown(window);
glfwTerminate();
return 0;
}

View File

@ -0,0 +1,9 @@
#version 430 core
in vec4 color;
out vec4 out_color;
void main()
{
out_color = color;
}

View File

@ -0,0 +1,14 @@
#version 430 core
layout(location = 0) in vec4 vertexPosition;
layout(location = 1) in vec4 vertexColor;
uniform mat4 transformation;
out vec4 color;
void main()
{
color = vertexColor;
gl_Position = transformation * vertexPosition;
}

View File

@ -0,0 +1,8 @@
#version 430 core
out vec4 out_color;
void main()
{
out_color = vec4(0.9,0.3,1.0, 1.);
}

View File

@ -0,0 +1,12 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
void main()
{
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,9 @@
#version 430 core
uniform vec3 objectColor;
in vec3 normal;
void main()
{
gl_FragColor = vec4(normal, 1. );
}

View File

@ -0,0 +1,14 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
out vec3 normal;
void main()
{
normal=vertexNormal;
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

55
cw 3/src/Box.cpp Normal file
View File

@ -0,0 +1,55 @@
// dane 36 wierzcholkow i kolorow opisujace model pudelka
const float box[] = {
// points colors
0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
};

31
cw 3/src/Camera.cpp Normal file
View File

@ -0,0 +1,31 @@
#include "Camera.h"
glm::mat4 Core::createPerspectiveMatrix(float zNear, float zFar, float frustumScale)
{
glm::mat4 perspective;
perspective[0][0] = 1.f;
perspective[1][1] = frustumScale;
perspective[2][2] = (zFar + zNear) / (zNear - zFar);
perspective[3][2] = (2 * zFar * zNear) / (zNear - zFar);
perspective[2][3] = -1;
perspective[3][3] = 0;
return perspective;
}
glm::mat4 Core::createViewMatrix( glm::vec3 position, glm::vec3 forward, glm::vec3 up )
{
glm::vec3 side = glm::cross(forward, up);
// Trzeba pamietac o minusie przy ustawianiu osi Z kamery.
// Wynika to z tego, ze standardowa macierz perspektywiczna zaklada, ze "z przodu" jest ujemna (a nie dodatnia) czesc osi Z.
glm::mat4 cameraRotation;
cameraRotation[0][0] = side.x; cameraRotation[1][0] = side.y; cameraRotation[2][0] = side.z;
cameraRotation[0][1] = up.x; cameraRotation[1][1] = up.y; cameraRotation[2][1] = up.z;
cameraRotation[0][2] = -forward.x; cameraRotation[1][2] = -forward.y; cameraRotation[2][2] = -forward.z;
glm::mat4 cameraTranslation;
cameraTranslation[3] = glm::vec4(-position, 1.0f);
return cameraRotation * cameraTranslation;
}

14
cw 3/src/Camera.h Normal file
View File

@ -0,0 +1,14 @@
#pragma once
#include "glm.hpp"
namespace Core
{
glm::mat4 createPerspectiveMatrix(float zNear = 0.1f, float zFar = 100.0f, float frustumScale = 1.f);
// position - pozycja kamery
// forward - wektor "do przodu" kamery (jednostkowy)
// up - wektor "w gore" kamery (jednostkowy)
// up i forward musza byc ortogonalne!
glm::mat4 createViewMatrix(glm::vec3 position, glm::vec3 forward, glm::vec3 up);
}

86
cw 3/src/Render_Utils.cpp Normal file
View File

@ -0,0 +1,86 @@
#include "Render_Utils.h"
#include <algorithm>
#include "glew.h"
#include "freeglut.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
void Core::RenderContext::initFromAssimpMesh(aiMesh* mesh) {
vertexArray = 0;
vertexBuffer = 0;
vertexIndexBuffer = 0;
std::vector<aiVector2D> textureCoord;
std::vector<unsigned int> indices;
//tex coord must be converted to 2d vecs
for (unsigned int i = 0; i < mesh->mNumVertices; i++)
{
if (mesh->mTextureCoords[0] != nullptr) {
//aiVector2D()
textureCoord.push_back(aiVector2D(mesh->mTextureCoords[0][i].x, mesh->mTextureCoords[0][i].y));
}
else {
textureCoord.push_back(aiVector2D(0.0f, 0.0f));
}
}
if (mesh->mTextureCoords[0] == nullptr) {
std::cout << "no uv coords\n";
}
for (unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// retrieve all indices of the face and store them in the indices vector
for (unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
}
void Core::DrawVertexArray(const float * vertexArray, int numVertices, int elementSize )
{
glVertexAttribPointer(0, elementSize, GL_FLOAT, false, 0, vertexArray);
glEnableVertexAttribArray(0);
glDrawArrays(GL_TRIANGLES, 0, numVertices);
}
void Core::DrawVertexArrayIndexed( const float * vertexArray, const int * indexArray, int numIndexes, int elementSize )
{
glVertexAttribPointer(0, elementSize, GL_FLOAT, false, 0, vertexArray);
glEnableVertexAttribArray(0);
glDrawElements(GL_TRIANGLES, numIndexes, GL_UNSIGNED_INT, indexArray);
}
void Core::DrawVertexArray( const VertexData & data )
{
int numAttribs = std::min(VertexData::MAX_ATTRIBS, data.NumActiveAttribs);
for(int i = 0; i < numAttribs; i++)
{
glVertexAttribPointer(i, data.Attribs[i].Size, GL_FLOAT, false, 0, data.Attribs[i].Pointer);
glEnableVertexAttribArray(i);
}
glDrawArrays(GL_TRIANGLES, 0, data.NumVertices);
}
void Core::DrawContext(Core::RenderContext& context)
{
glBindVertexArray(context.vertexArray);
glDrawElements(
GL_TRIANGLES, // mode
context.size, // count
GL_UNSIGNED_INT, // type
(void*)0 // element array buffer offset
);
glBindVertexArray(0);
}

72
cw 3/src/Render_Utils.h Normal file
View File

@ -0,0 +1,72 @@
#pragma once
#include "glm.hpp"
#include "glew.h"
#include "objload.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#define BUFFER_OFFSET(i) ((char *)NULL + (i))
namespace Core
{
struct RenderContext
{
GLuint vertexArray;
GLuint vertexBuffer;
GLuint vertexIndexBuffer;
int size = 0;
void initFromOBJ(obj::Model& model);
void initFromAssimpMesh(aiMesh* mesh);
};
// vertexArray - jednowymiarowa tablica zawierajaca wartosci opisujace pozycje kolejnych wierzcholkow w jednym ciagu (x1, y1, z1, w1, x2, y2, z2, w2, ...)
// numVertices - liczba wierzcholkow do narysowania
// elementSize - liczba wartosci opisujacych pojedynczy wierzcholek (np. 3 gdy wierzcholek opisany jest trojka (x, y, z))
void DrawVertexArray(const float * vertexArray, int numVertices, int elementSize);
// indexArray - jednowymiarowa tablica zawierajaca indeksy wierzcholkow kolejnych trojkatow w jednym ciagu (t1_i1, t1_i2, t1_i3, t2_i1, t2_i2, t2_i3, ...)
// numIndexes - liczba indeksow w tablicy indexArray
void DrawVertexArrayIndexed(const float * vertexArray, const int * indexArray, int numIndexes, int elementSize);
struct VertexAttribute
{
const void * Pointer;
int Size;
};
struct VertexData
{
static const int MAX_ATTRIBS = 8;
VertexAttribute Attribs[MAX_ATTRIBS];
int NumActiveAttribs;
int NumVertices;
};
// Ta funkcja sluzy do rysowania trojkatow, ktorych wierzcholki moga byc opisane wiecej niz jednym atrybutem.
// Funkcja przyjmuje jako parametr strukture, w ktorej nalezy zawrzec wszystkie potrzebne dane.
//
// Przykladowe wywolanie funkcji - narysowanie trojkata jak na pierwszych zajeciach:
/*
const float vertices[] = {
0.25f, 0.25f, 0.0f, 1.0f,
0.25f, -0.25f, 0.0f, 1.0f,
-0.25f, -0.25f, 0.0f, 1.0f
};
Core::VertexData vertexData;
vertexData.NumActiveAttribs = 1; // Liczba uzywanych atrybutow wierzcholka
vertexData.Attribs[0].Pointer = vertices; // Wskaznik na dane zerowego atrybutu
vertexData.Attribs[0].Size = 4; // Wielkosc zerowego atrybutu (ilosc liczb opisujacych ten atrybut w pojedynczym wierzcholku)
vertexData.NumVertices = 3; // Liczba wierzcholkow do narysowania
Core::DrawVertexArray(vertexData);
*/
void DrawVertexArray(const VertexData & data);
void DrawContext(RenderContext& context);
}

102
cw 3/src/Shader_Loader.cpp Normal file
View File

@ -0,0 +1,102 @@
#include "Shader_Loader.h"
#include<iostream>
#include<fstream>
#include<vector>
using namespace Core;
Shader_Loader::Shader_Loader(void){}
Shader_Loader::~Shader_Loader(void){}
std::string Shader_Loader::ReadShader(char *filename)
{
std::string shaderCode;
std::ifstream file(filename, std::ios::in);
if (!file.good())
{
std::cout << "Can't read file " << filename << std::endl;
std::terminate();
}
file.seekg(0, std::ios::end);
shaderCode.resize((unsigned int)file.tellg());
file.seekg(0, std::ios::beg);
file.read(&shaderCode[0], shaderCode.size());
file.close();
return shaderCode;
}
GLuint Shader_Loader::CreateShader(GLenum shaderType, std::string
source, char* shaderName)
{
int compile_result = 0;
GLuint shader = glCreateShader(shaderType);
const char *shader_code_ptr = source.c_str();
const int shader_code_size = source.size();
glShaderSource(shader, 1, &shader_code_ptr, &shader_code_size);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &compile_result);
//sprawdz bledy
if (compile_result == GL_FALSE)
{
int info_log_length = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> shader_log(info_log_length);
glGetShaderInfoLog(shader, info_log_length, NULL, &shader_log[0]);
std::cout << "ERROR compiling shader: " << shaderName << std::endl << &shader_log[0] << std::endl;
return 0;
}
return shader;
}
GLuint Shader_Loader::CreateProgram(char* vertexShaderFilename,
char* fragmentShaderFilename)
{
//wczytaj shadery
std::string vertex_shader_code = ReadShader(vertexShaderFilename);
std::string fragment_shader_code = ReadShader(fragmentShaderFilename);
GLuint vertex_shader = CreateShader(GL_VERTEX_SHADER, vertex_shader_code, "vertex shader");
GLuint fragment_shader = CreateShader(GL_FRAGMENT_SHADER, fragment_shader_code, "fragment shader");
int link_result = 0;
//stworz shader
GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &link_result);
//sprawdz bledy w linkerze
if (link_result == GL_FALSE)
{
int info_log_length = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> program_log(info_log_length);
glGetProgramInfoLog(program, info_log_length, NULL, &program_log[0]);
std::cout << "Shader Loader : LINK ERROR" << std::endl << &program_log[0] << std::endl;
return 0;
}
glDetachShader(program, vertex_shader);
glDetachShader(program, fragment_shader);
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
return program;
}
void Shader_Loader::DeleteProgram( GLuint program )
{
glDeleteProgram(program);
}

29
cw 3/src/Shader_Loader.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include "glew.h"
#include "freeglut.h"
#include <iostream>
namespace Core
{
class Shader_Loader
{
private:
std::string ReadShader(char *filename);
GLuint CreateShader(GLenum shaderType,
std::string source,
char* shaderName);
public:
Shader_Loader(void);
~Shader_Loader(void);
GLuint CreateProgram(char* VertexShaderFilename,
char* FragmentShaderFilename);
void DeleteProgram(GLuint program);
};
}

233
cw 3/src/ex_3_1.hpp Normal file
View File

@ -0,0 +1,233 @@
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "Camera.h"
#include "Box.cpp"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <string>
GLuint program, program_box;
Core::Shader_Loader shaderLoader;
Core::RenderContext shipContext;
Core::RenderContext sphereContext;
glm::vec3 cameraPos = glm::vec3(-1.f, 0, 0);
glm::vec3 cameraDir = glm::vec3(1.f, 0.f, 0.f);
GLuint VAO,VBO;
float aspectRatio = 1.f;
std::vector<glm::vec3> quadsPositions = {
glm::vec3(0.0, 0.0, 0.0),
glm::vec3(0.0, 0.7, 0.0),
glm::vec3(0.7, 0.7, 0.7),
};
glm::vec3 p = glm::vec3(0, 0, 0);
glm::mat4 createCameraMatrix(){
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// ! Macierz translation jest definiowana wierszowo dla poprawy czytelnosci. OpenGL i GLM domyslnie stosuje macierze kolumnowe, dlatego musimy ja transponowac !
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
glm::vec3 cameraSide = glm::normalize(glm::cross(cameraDir, glm::vec3(0, 1, 0)));
glm::vec3 cameraUp = glm::normalize(glm::cross(cameraSide, cameraDir));
glm::mat4 cameraRotationMatrix = glm::mat4({
cameraSide.x, cameraSide.y, cameraSide.z, 0.,
cameraUp.x, cameraUp.y, cameraUp.z, 0.,
-cameraDir.x, -cameraDir.y, -cameraDir.z, 0.,
0.,0.,0.,1.,
});
cameraRotationMatrix = glm::transpose(cameraRotationMatrix);
//Macierz translacji M_VT otrzymujemy przez translacje o `-cameraPos`
glm::mat4 cameraMatrix = cameraRotationMatrix * glm::translate(glm::mat4(1.0), -cameraPos);;
return cameraMatrix;
}
glm::mat4 createPerspectiveMatrix(float fov, float aspectRatio){
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// ! Macierz translation jest definiowana wierszowo dla poprawy czytelnosci. OpenGL i GLM domyslnie stosuje macierze kolumnowe, dlatego musimy ja transponowac !
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
float n = 0.1f;
//float f = 0.5f;//żeby tylna ściana sześcianu zniknęła
float f = 100.f;
float s = 1 / (glm::tan(fov * glm::pi<float>() / 360));
//zad 4
/*glm::mat4 perspectiveMatrix = glm::mat4({
s, 0., 0., 0.,
0., s * aspectRatio, 0., 0.,
0., 0., (n+f)/(n-f),2*n*f/(n-f),
0., 0., -1., 0,
});*/
//zad 4*
float xMult = 1;
float yMult = 1;
if (aspectRatio > 1) {
xMult = 1 / aspectRatio;
} else {
yMult = aspectRatio;
}
glm::mat4 perspectiveMatrix = glm::mat4({
s * xMult, 0., 0., 0.,
0., s * yMult, 0., 0.,
0., 0., (n + f) / (n - f),2 * n * f / (n - f),
0., 0., -1., 0,
});
perspectiveMatrix=glm::transpose(perspectiveMatrix);
return perspectiveMatrix;
}
void renderScene(GLFWwindow* window)
{
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 transformation;
glUseProgram(program_box);
glBindVertexArray(VAO);
float fov = 90;
transformation = createPerspectiveMatrix(fov, aspectRatio);
//zad 5
transformation *= createCameraMatrix();
//Zad 6
for (const glm::vec3& pos : quadsPositions) {
glBindVertexArray(VAO);
glm::mat4 currTransform = glm::mat4(1.0f);
currTransform *= createPerspectiveMatrix(fov, aspectRatio);
currTransform *= createCameraMatrix();
currTransform *= glm::translate(glm::mat4(1.0f), pos);
glUniformMatrix4fv(glGetUniformLocation(program_box, "transformation"), 1, GL_FALSE, (float*)&currTransform);
glDrawArrays(GL_TRIANGLES, 0, 36);
//нафига вообще это нужно?
glBindVertexArray(0);
}
//glUniformMatrix4fv(glGetUniformLocation(program_box, "transformation"), 1, GL_FALSE, (float*)&transformation);
//glDrawArrays(GL_TRIANGLES, 0, 36);
//glBindVertexArray(0);
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
aspectRatio = width / float(height);
glViewport(0, 0, width, height);
}
void loadModelToContext(std::string path, Core::RenderContext& context)
{
Assimp::Importer import;
const aiScene* scene = import.ReadFile(path, aiProcess_Triangulate | aiProcess_CalcTangentSpace);
if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
std::cout << "ERROR::ASSIMP::" << import.GetErrorString() << std::endl;
return;
}
}
void init(GLFWwindow* window)
{
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glEnable(GL_DEPTH_TEST);
program = shaderLoader.CreateProgram("shaders/shader_3_1.vert", "shaders/shader_3_1.frag");
program_box = shaderLoader.CreateProgram("shaders/shader_2_1.vert", "shaders/shader_2_1.frag");
glGenVertexArrays(1, &VAO);
// 2. Powiąż stworzone VAO za pomocą funkcji glBindVertexArray
glBindVertexArray(VAO);
// II Zainicjalizuj VBO
// 3. Stwórz VertexBufferObject do przechowywania pozycji wierzchołków za pomocą funkcji glGenBuffers
glGenBuffers(1, &VBO);
// 4. Powiąż stworzone VBO za pomocą funkcji glBindBuffer(GLenum target, GLuint )
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 5. Zaalokuj w GPU miejsce na tablice box i zaalakokuj ją za pomocą glBufferData
glBufferData(GL_ARRAY_BUFFER, sizeof(box), box, GL_STATIC_DRAW);
// II Stwórz definicję danych w buforze
// 6. Aktywuj atrybut powiązany z pozycją wierchołków za pomocą glEnableVertexAttribArray(GLuint index). Indeks jest zapisany w shaderze wierzchołków w 3. lini. Można odpytać shader o indeks za pomocą funkcji glGetAttribLocation(GL uint program, const GLchar *name)
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(4 * sizeof(float)));
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
glm::vec3 cameraSide = glm::normalize(glm::cross(cameraDir, glm::vec3(0.f,1.f,0.f)));
float angleSpeed = 0.05f;
float moveSpeed = 0.05f;
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(window, true);
}
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraDir * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraDir * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_X) == GLFW_PRESS)
cameraPos -= cameraSide * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_Z) == GLFW_PRESS)
cameraPos += cameraSide * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraDir = glm::vec3(glm::eulerAngleY(angleSpeed) * glm::vec4(cameraDir, 0));
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraDir = glm::vec3(glm::eulerAngleY(-angleSpeed) * glm::vec4(cameraDir, 0));
//zad 7*
if (glfwGetKey(window, GLFW_KEY_R) == GLFW_PRESS)
cameraPos += glm::vec3(0, 1, 0) * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_F) == GLFW_PRESS)
cameraPos -= glm::vec3(0, 1, 0) * moveSpeed;
cameraDir = glm::normalize(p - cameraPos);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

47
cw 3/src/main.cpp Normal file
View File

@ -0,0 +1,47 @@
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include "ex_3_1.hpp"
int main(int argc, char** argv)
{
// inicjalizacja glfw
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// tworzenie okna za pomoca glfw
GLFWwindow* window = glfwCreateWindow(500, 500, "FirstWindow", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// ladowanie OpenGL za pomoca glew
glewInit();
glViewport(0, 0, 500, 500);
init(window);
// uruchomienie glownej petli
renderLoop(window);
shutdown(window);
glfwTerminate();
return 0;
}

291
cw 3/src/objload.h Normal file
View File

@ -0,0 +1,291 @@
/* Copyright (c) 2012, Gerhard Reitmayr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
#ifndef OBJLOAD_H_
#define OBJLOAD_H_
#include <algorithm>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <set>
#include <vector>
namespace obj {
struct Model {
std::vector<float> vertex; //< 3 * N entries
std::vector<float> texCoord; //< 2 * N entries
std::vector<float> normal; //< 3 * N entries
std::map<std::string, std::vector<unsigned short> > faces; //< assume triangels and uniform indexing
};
struct ObjModel {
struct FaceVertex {
FaceVertex() : v(-1), t(-1), n(-1) {}
int v, t, n;
bool operator<( const FaceVertex & other ) const;
bool operator==( const FaceVertex & other ) const;
};
typedef std::pair<std::vector<FaceVertex>, std::vector<unsigned> > FaceList;
std::vector<float> vertex; //< 3 * N entries
std::vector<float> texCoord; //< 2 * N entries
std::vector<float> normal; //< 3 * N entries
std::map<std::string, FaceList > faces;
};
inline ObjModel parseObjModel( std::istream & in);
inline void tesselateObjModel( ObjModel & obj);
inline ObjModel tesselateObjModel( const ObjModel & obj );
inline Model convertToModel( const ObjModel & obj );
inline Model loadModel( std::istream & in );
inline Model loadModelFromString( const std::string & in );
inline Model loadModelFromFile( const std::string & in );
inline std::ostream & operator<<( std::ostream & out, const Model & m );
inline std::ostream & operator<<( std::ostream & out, const ObjModel::FaceVertex & f);
// ---------------------------- Implementation starts here -----------------------
inline bool ObjModel::FaceVertex::operator<( const ObjModel::FaceVertex & other ) const {
return (v < other.v) || (v == other.v && t < other.t ) || (v == other.v && t == other.t && n < other.n);
}
inline bool ObjModel::FaceVertex::operator==( const ObjModel::FaceVertex & other ) const {
return (v == other.v && t == other.t && n == other.n);
}
template <typename T>
inline std::istream & operator>>(std::istream & in, std::vector<T> & vec ){
T temp;
if(in >> temp)
vec.push_back(temp);
return in;
}
template <typename T>
inline std::istream & operator>>(std::istream & in, std::set<T> & vec ){
T temp;
if(in >> temp)
vec.insert(temp);
return in;
}
inline std::istream & operator>>( std::istream & in, ObjModel::FaceVertex & f){
if(in >> f.v){
if(in.peek() == '/'){
in.get();
in >> f.t;
in.clear();
if(in.peek() == '/'){
in.get();
in >> f.n;
in.clear();
}
}
in.clear();
--f.v;
--f.t;
--f.n;
}
// std::cout << f << std::endl;
return in;
}
ObjModel parseObjModel( std::istream & in ){
char line[1024];
std::string op;
std::istringstream line_in;
std::set<std::string> groups;
groups.insert("default");
ObjModel data;
while(in.good()){
in.getline(line, 1023);
line_in.clear();
line_in.str(line);
if(!(line_in >> op))
continue;
if(op == "v")
line_in >> data.vertex >> data.vertex >> data.vertex;
else if(op == "vt")
line_in >> data.texCoord >> data.texCoord >> data.texCoord;
else if(op == "vn")
line_in >> data.normal >> data.normal >> data.normal;
else if(op == "g"){
groups.clear();
while(line_in >> groups) ;
groups.insert("default");
}
else if(op == "f") {
std::vector<ObjModel::FaceVertex> list;
while(line_in >> list) ;
for(std::set<std::string>::const_iterator g = groups.begin(); g != groups.end(); ++g){
ObjModel::FaceList & fl = data.faces[*g];
fl.second.push_back(fl.first.size());
fl.first.insert(fl.first.end(), list.begin(), list.end());
}
}
}
for(std::map<std::string, ObjModel::FaceList>::iterator g = data.faces.begin(); g != data.faces.end(); ++g){
ObjModel::FaceList & fl = g->second;
fl.second.push_back(fl.first.size());
}
return data;
}
inline void tesselateObjModel( std::vector<ObjModel::FaceVertex> & input, std::vector<unsigned> & input_start){
std::vector<ObjModel::FaceVertex> output;
std::vector<unsigned> output_start;
output.reserve(input.size());
output_start.reserve(input_start.size());
for(std::vector<unsigned>::const_iterator s = input_start.begin(); s != input_start.end() - 1; ++s){
const unsigned size = *(s+1) - *s;
if(size > 3){
const ObjModel::FaceVertex & start_vertex = input[*s];
for( int i = 1; i < (int)size-1; ++i){
output_start.push_back(output.size());
output.push_back(start_vertex);
output.push_back(input[*s+i]);
output.push_back(input[*s+i+1]);
}
} else {
output_start.push_back(output.size());
output.insert(output.end(), input.begin() + *s, input.begin() + *(s+1));
}
}
output_start.push_back(output.size());
input.swap(output);
input_start.swap(output_start);
}
void tesselateObjModel( ObjModel & obj){
for(std::map<std::string, ObjModel::FaceList>::iterator g = obj.faces.begin(); g != obj.faces.end(); ++g){
ObjModel::FaceList & fl = g->second;
tesselateObjModel(fl.first, fl.second);
}
}
Model convertToModel( const ObjModel & obj ) {
// insert all face vertices into a vector and make unique
std::vector<ObjModel::FaceVertex> unique(obj.faces.find("default")->second.first);
std::sort(unique.begin(), unique.end());
unique.erase( std::unique(unique.begin(), unique.end()), unique.end());
// build a new model with repeated vertices/texcoords/normals to have single indexing
Model model;
for(std::vector<ObjModel::FaceVertex>::const_iterator f = unique.begin(); f != unique.end(); ++f){
model.vertex.insert(model.vertex.end(), obj.vertex.begin() + 3*f->v, obj.vertex.begin() + 3*f->v + 3);
if(!obj.texCoord.empty()){
const int index = (f->t > -1) ? f->t : f->v;
model.texCoord.insert(model.texCoord.end(), obj.texCoord.begin() + 2*index, obj.texCoord.begin() + 2*index + 2);
}
if(!obj.normal.empty()){
const int index = (f->n > -1) ? f->n : f->v;
model.normal.insert(model.normal.end(), obj.normal.begin() + 3*index, obj.normal.begin() + 3*index + 3);
}
}
// look up unique index and transform face descriptions
for(std::map<std::string, ObjModel::FaceList>::const_iterator g = obj.faces.begin(); g != obj.faces.end(); ++g){
const std::string & name = g->first;
const ObjModel::FaceList & fl = g->second;
std::vector<unsigned short> & v = model.faces[g->first];
v.reserve(fl.first.size());
for(std::vector<ObjModel::FaceVertex>::const_iterator f = fl.first.begin(); f != fl.first.end(); ++f){
const unsigned short index = std::distance(unique.begin(), std::lower_bound(unique.begin(), unique.end(), *f));
v.push_back(index);
}
}
return model;
}
ObjModel tesselateObjModel( const ObjModel & obj ){
ObjModel result = obj;
tesselateObjModel(result);
return result;
}
Model loadModel( std::istream & in ){
ObjModel model = parseObjModel(in);
tesselateObjModel(model);
return convertToModel(model);
}
Model loadModelFromString( const std::string & str ){
std::istringstream in(str);
return loadModel(in);
}
Model loadModelFromFile( const std::string & str) {
std::ifstream in(str.c_str());
return loadModel(in);
}
inline std::ostream & operator<<( std::ostream & out, const ObjModel::FaceVertex & f){
out << f.v << "\t" << f.t << "\t" << f.n;
return out;
}
std::ostream & operator<<( std::ostream & out, const Model & m ){
if(!m.vertex.empty()){
out << "vertex\n";
for(int i = 0; i < (int)m.vertex.size(); ++i)
out << m.vertex[i] << (((i % 3) == 2)?"\n":"\t");
}
if(!m.texCoord.empty()){
out << "texCoord\n";
for(int i = 0; i < (int)m.texCoord.size(); ++i)
out << m.texCoord[i] << (((i % 2) == 1)?"\n":"\t");
}
if(!m.normal.empty()){
out << "normal\n";
for(int i = 0; i < (int)m.normal.size(); ++i)
out << m.normal[i] << (((i % 3) == 2)?"\n":"\t");
}
if(!m.faces.empty()){
out << "faces\t";
for(std::map<std::string, std::vector<unsigned short> >::const_iterator g = m.faces.begin(); g != m.faces.end(); ++g){
out << g->first << " ";
}
out << "\n";
// for(int i = 0; i < m.face.size(); ++i)
// out << m.face[i] << (((i % 3) == 2)?"\n":"\t");
}
return out;
}
} // namespace obj
#endif // OBJLOAD_H_

View File

@ -0,0 +1,9 @@
#version 430 core
in vec4 color;
out vec4 out_color;
void main()
{
out_color = color;
}

View File

@ -0,0 +1,14 @@
#version 430 core
layout(location = 0) in vec4 vertexPosition;
layout(location = 1) in vec4 vertexColor;
uniform mat4 transformation;
out vec4 color;
void main()
{
color = vertexColor;
gl_Position = transformation * vertexPosition;
}

View File

@ -0,0 +1,8 @@
#version 430 core
out vec4 out_color;
void main()
{
out_color = vec4(0.9,0.3,1.0, 1.);
}

View File

@ -0,0 +1,12 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
void main()
{
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,9 @@
#version 430 core
uniform vec3 objectColor;
in vec3 normal;
void main()
{
gl_FragColor = vec4(normal, 1. );
}

View File

@ -0,0 +1,14 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
out vec3 normal;
void main()
{
normal=vertexNormal;
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,9 @@
#version 430 core
out vec4 out_color;
void main()
{
out_color = vec4(1,0,1,1);
}

View File

@ -0,0 +1,12 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
void main()
{
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

55
cw 4/src/Box.cpp Normal file
View File

@ -0,0 +1,55 @@
// dane 36 wierzcholkow i kolorow opisujace model pudelka
const float box[] = {
// points colors
0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
};

31
cw 4/src/Camera.cpp Normal file
View File

@ -0,0 +1,31 @@
#include "Camera.h"
glm::mat4 Core::createPerspectiveMatrix(float zNear, float zFar, float frustumScale)
{
glm::mat4 perspective;
perspective[0][0] = 1.f;
perspective[1][1] = frustumScale;
perspective[2][2] = (zFar + zNear) / (zNear - zFar);
perspective[3][2] = (2 * zFar * zNear) / (zNear - zFar);
perspective[2][3] = -1;
perspective[3][3] = 0;
return perspective;
}
glm::mat4 Core::createViewMatrix( glm::vec3 position, glm::vec3 forward, glm::vec3 up )
{
glm::vec3 side = glm::cross(forward, up);
// Trzeba pamietac o minusie przy ustawianiu osi Z kamery.
// Wynika to z tego, ze standardowa macierz perspektywiczna zaklada, ze "z przodu" jest ujemna (a nie dodatnia) czesc osi Z.
glm::mat4 cameraRotation;
cameraRotation[0][0] = side.x; cameraRotation[1][0] = side.y; cameraRotation[2][0] = side.z;
cameraRotation[0][1] = up.x; cameraRotation[1][1] = up.y; cameraRotation[2][1] = up.z;
cameraRotation[0][2] = -forward.x; cameraRotation[1][2] = -forward.y; cameraRotation[2][2] = -forward.z;
glm::mat4 cameraTranslation;
cameraTranslation[3] = glm::vec4(-position, 1.0f);
return cameraRotation * cameraTranslation;
}

14
cw 4/src/Camera.h Normal file
View File

@ -0,0 +1,14 @@
#pragma once
#include "glm.hpp"
namespace Core
{
glm::mat4 createPerspectiveMatrix(float zNear = 0.1f, float zFar = 100.0f, float frustumScale = 1.f);
// position - pozycja kamery
// forward - wektor "do przodu" kamery (jednostkowy)
// up - wektor "w gore" kamery (jednostkowy)
// up i forward musza byc ortogonalne!
glm::mat4 createViewMatrix(glm::vec3 position, glm::vec3 forward, glm::vec3 up);
}

128
cw 4/src/Render_Utils.cpp Normal file
View File

@ -0,0 +1,128 @@
#include "Render_Utils.h"
#include <algorithm>
#include "glew.h"
#include "freeglut.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
void Core::RenderContext::initFromAssimpMesh(aiMesh* mesh) {
vertexArray = 0;
vertexBuffer = 0;
vertexIndexBuffer = 0;
std::vector<float> textureCoord;
std::vector<unsigned int> indices;
//tex coord must be converted to 2d vecs
for (unsigned int i = 0; i < mesh->mNumVertices; i++)
{
if (mesh->mTextureCoords[0] != nullptr) {
textureCoord.push_back(mesh->mTextureCoords[0][i].x);
textureCoord.push_back(mesh->mTextureCoords[0][i].y);
}
else {
textureCoord.push_back(0.0f);
textureCoord.push_back(0.0f);
}
}
if (mesh->mTextureCoords[0] == nullptr) {
std::cout << "no uv coords\n";
}
for (unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// retrieve all indices of the face and store them in the indices vector
for (unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
unsigned int vertexDataBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexNormalBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexTexBufferSize = sizeof(float) * mesh->mNumVertices * 2;
unsigned int vertexTangentBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexBiTangentBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexElementBufferSize = sizeof(unsigned int) * indices.size();
size = indices.size();
glGenVertexArrays(1, &vertexArray);
glBindVertexArray(vertexArray);
glGenBuffers(1, &vertexIndexBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertexIndexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexElementBufferSize, &indices[0], GL_STATIC_DRAW);
glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
//std::cout << vertexBuffer;
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glEnableVertexAttribArray(3);
glEnableVertexAttribArray(4);
glBufferData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize + vertexTangentBufferSize + vertexBiTangentBufferSize, NULL, GL_STATIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexDataBufferSize, mesh->mVertices);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize, vertexNormalBufferSize, mesh->mNormals);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize, vertexTexBufferSize, &textureCoord[0]);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize, vertexTangentBufferSize, mesh->mTangents);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize + vertexTangentBufferSize, vertexBiTangentBufferSize, mesh->mBitangents);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void*)(0));
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, (void*)(vertexDataBufferSize));
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 0, (void*)(vertexNormalBufferSize + vertexDataBufferSize));
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 0, (void*)(vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize));
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, 0, (void*)(vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize + vertexTangentBufferSize));
}
void Core::DrawVertexArray(const float * vertexArray, int numVertices, int elementSize )
{
glVertexAttribPointer(0, elementSize, GL_FLOAT, false, 0, vertexArray);
glEnableVertexAttribArray(0);
glDrawArrays(GL_TRIANGLES, 0, numVertices);
}
void Core::DrawVertexArrayIndexed( const float * vertexArray, const int * indexArray, int numIndexes, int elementSize )
{
glVertexAttribPointer(0, elementSize, GL_FLOAT, false, 0, vertexArray);
glEnableVertexAttribArray(0);
glDrawElements(GL_TRIANGLES, numIndexes, GL_UNSIGNED_INT, indexArray);
}
void Core::DrawVertexArray( const VertexData & data )
{
int numAttribs = std::min(VertexData::MAX_ATTRIBS, data.NumActiveAttribs);
for(int i = 0; i < numAttribs; i++)
{
glVertexAttribPointer(i, data.Attribs[i].Size, GL_FLOAT, false, 0, data.Attribs[i].Pointer);
glEnableVertexAttribArray(i);
}
glDrawArrays(GL_TRIANGLES, 0, data.NumVertices);
}
void Core::DrawContext(Core::RenderContext& context)
{
glBindVertexArray(context.vertexArray);
glDrawElements(
GL_TRIANGLES, // mode
context.size, // count
GL_UNSIGNED_INT, // type
(void*)0 // element array buffer offset
);
glBindVertexArray(0);
}

71
cw 4/src/Render_Utils.h Normal file
View File

@ -0,0 +1,71 @@
#pragma once
#include "glm.hpp"
#include "glew.h"
#include "objload.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#define BUFFER_OFFSET(i) ((char *)NULL + (i))
namespace Core
{
struct RenderContext
{
GLuint vertexArray;
GLuint vertexBuffer;
GLuint vertexIndexBuffer;
int size = 0;
void initFromAssimpMesh(aiMesh* mesh);
};
// vertexArray - jednowymiarowa tablica zawierajaca wartosci opisujace pozycje kolejnych wierzcholkow w jednym ciagu (x1, y1, z1, w1, x2, y2, z2, w2, ...)
// numVertices - liczba wierzcholkow do narysowania
// elementSize - liczba wartosci opisujacych pojedynczy wierzcholek (np. 3 gdy wierzcholek opisany jest trojka (x, y, z))
void DrawVertexArray(const float * vertexArray, int numVertices, int elementSize);
// indexArray - jednowymiarowa tablica zawierajaca indeksy wierzcholkow kolejnych trojkatow w jednym ciagu (t1_i1, t1_i2, t1_i3, t2_i1, t2_i2, t2_i3, ...)
// numIndexes - liczba indeksow w tablicy indexArray
void DrawVertexArrayIndexed(const float * vertexArray, const int * indexArray, int numIndexes, int elementSize);
struct VertexAttribute
{
const void * Pointer;
int Size;
};
struct VertexData
{
static const int MAX_ATTRIBS = 8;
VertexAttribute Attribs[MAX_ATTRIBS];
int NumActiveAttribs;
int NumVertices;
};
// Ta funkcja sluzy do rysowania trojkatow, ktorych wierzcholki moga byc opisane wiecej niz jednym atrybutem.
// Funkcja przyjmuje jako parametr strukture, w ktorej nalezy zawrzec wszystkie potrzebne dane.
//
// Przykladowe wywolanie funkcji - narysowanie trojkata jak na pierwszych zajeciach:
/*
const float vertices[] = {
0.25f, 0.25f, 0.0f, 1.0f,
0.25f, -0.25f, 0.0f, 1.0f,
-0.25f, -0.25f, 0.0f, 1.0f
};
Core::VertexData vertexData;
vertexData.NumActiveAttribs = 1; // Liczba uzywanych atrybutow wierzcholka
vertexData.Attribs[0].Pointer = vertices; // Wskaznik na dane zerowego atrybutu
vertexData.Attribs[0].Size = 4; // Wielkosc zerowego atrybutu (ilosc liczb opisujacych ten atrybut w pojedynczym wierzcholku)
vertexData.NumVertices = 3; // Liczba wierzcholkow do narysowania
Core::DrawVertexArray(vertexData);
*/
void DrawVertexArray(const VertexData & data);
void DrawContext(RenderContext& context);
}

102
cw 4/src/Shader_Loader.cpp Normal file
View File

@ -0,0 +1,102 @@
#include "Shader_Loader.h"
#include<iostream>
#include<fstream>
#include<vector>
using namespace Core;
Shader_Loader::Shader_Loader(void){}
Shader_Loader::~Shader_Loader(void){}
std::string Shader_Loader::ReadShader(char *filename)
{
std::string shaderCode;
std::ifstream file(filename, std::ios::in);
if (!file.good())
{
std::cout << "Can't read file " << filename << std::endl;
std::terminate();
}
file.seekg(0, std::ios::end);
shaderCode.resize((unsigned int)file.tellg());
file.seekg(0, std::ios::beg);
file.read(&shaderCode[0], shaderCode.size());
file.close();
return shaderCode;
}
GLuint Shader_Loader::CreateShader(GLenum shaderType, std::string
source, char* shaderName)
{
int compile_result = 0;
GLuint shader = glCreateShader(shaderType);
const char *shader_code_ptr = source.c_str();
const int shader_code_size = source.size();
glShaderSource(shader, 1, &shader_code_ptr, &shader_code_size);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &compile_result);
//sprawdz bledy
if (compile_result == GL_FALSE)
{
int info_log_length = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> shader_log(info_log_length);
glGetShaderInfoLog(shader, info_log_length, NULL, &shader_log[0]);
std::cout << "ERROR compiling shader: " << shaderName << std::endl << &shader_log[0] << std::endl;
return 0;
}
return shader;
}
GLuint Shader_Loader::CreateProgram(char* vertexShaderFilename,
char* fragmentShaderFilename)
{
//wczytaj shadery
std::string vertex_shader_code = ReadShader(vertexShaderFilename);
std::string fragment_shader_code = ReadShader(fragmentShaderFilename);
GLuint vertex_shader = CreateShader(GL_VERTEX_SHADER, vertex_shader_code, "vertex shader");
GLuint fragment_shader = CreateShader(GL_FRAGMENT_SHADER, fragment_shader_code, "fragment shader");
int link_result = 0;
//stworz shader
GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &link_result);
//sprawdz bledy w linkerze
if (link_result == GL_FALSE)
{
int info_log_length = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> program_log(info_log_length);
glGetProgramInfoLog(program, info_log_length, NULL, &program_log[0]);
std::cout << "Shader Loader : LINK ERROR" << std::endl << &program_log[0] << std::endl;
return 0;
}
glDetachShader(program, vertex_shader);
glDetachShader(program, fragment_shader);
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
return program;
}
void Shader_Loader::DeleteProgram( GLuint program )
{
glDeleteProgram(program);
}

29
cw 4/src/Shader_Loader.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include "glew.h"
#include "freeglut.h"
#include <iostream>
namespace Core
{
class Shader_Loader
{
private:
std::string ReadShader(char *filename);
GLuint CreateShader(GLenum shaderType,
std::string source,
char* shaderName);
public:
Shader_Loader(void);
~Shader_Loader(void);
GLuint CreateProgram(char* VertexShaderFilename,
char* FragmentShaderFilename);
void DeleteProgram(GLuint program);
};
}

176
cw 4/src/ex_4_1.hpp Normal file
View File

@ -0,0 +1,176 @@
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "Camera.h"
#include "Box.cpp"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <string>
GLuint program;
Core::Shader_Loader shaderLoader;
Core::RenderContext shipContext;
Core::RenderContext sphereContext;
glm::vec3 cameraPos = glm::vec3(-4.f, 0, 0);
glm::vec3 cameraDir = glm::vec3(1.f, 0.f, 0.f);
GLuint VAO,VBO;
float aspectRatio = 1.f;
glm::vec3 lightColor = glm::vec3(0.9, 0.7, 0.8);
glm::mat4 createCameraMatrix()
{
glm::vec3 cameraSide = glm::normalize(glm::cross(cameraDir,glm::vec3(0.f,1.f,0.f)));
glm::vec3 cameraUp = glm::normalize(glm::cross(cameraSide,cameraDir));
//glm::vec3 cameraUp = glm::vec3(0.f, 1.f, 0.f);
glm::mat4 cameraRotrationMatrix = glm::mat4({
cameraSide.x,cameraSide.y,cameraSide.z,0,
cameraUp.x,cameraUp.y,cameraUp.z ,0,
-cameraDir.x,-cameraDir.y,-cameraDir.z,0,
0.,0.,0.,1.,
});
cameraRotrationMatrix = glm::transpose(cameraRotrationMatrix);
glm::mat4 cameraMatrix = cameraRotrationMatrix * glm::translate(-cameraPos);
//cameraMatrix = glm::mat4({
// 1.,0.,0.,cameraPos.x,
// 0.,1.,0.,cameraPos.y,
// 0.,0.,1.,cameraPos.z,
// 0.,0.,0.,1.,
// });
//cameraMatrix = glm::transpose(cameraMatrix);
//return Core::createViewMatrix(cameraPos, cameraDir, up);
return cameraMatrix;
}
glm::mat4 createPerspectiveMatrix()
{
glm::mat4 perspectiveMatrix;
float n = 0.05;
float f = 20.;
float a1 = glm::min(aspectRatio, 1.f);
float a2 = glm::min(1 / aspectRatio, 1.f);
perspectiveMatrix = glm::mat4({
1,0.,0.,0.,
0.,1,0.,0.,
0.,0.,(f+n) / (n - f),2*f * n / (n - f),
0.,0.,-1.,0.,
});
perspectiveMatrix=glm::transpose(perspectiveMatrix);
return perspectiveMatrix;
}
void drawObjectColor(Core::RenderContext& context, glm::mat4 modelMatrix, glm::vec3 color) {
glm::mat4 viewProjectionMatrix = createPerspectiveMatrix() * createCameraMatrix();
glm::mat4 transformation = viewProjectionMatrix * modelMatrix;
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
Core::DrawContext(context);
}
void renderScene(GLFWwindow* window)
{
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 transformation;
float time = glfwGetTime();
glUseProgram(program);
drawObjectColor(sphereContext, glm::mat4(), glm::vec3(0.3, 0.3, 0.2));
drawObjectColor(sphereContext, glm::translate(glm::vec3(0, 2, 0)), glm::vec3(0.9, 0.9, 0.2));
glUseProgram(0);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
aspectRatio = width / float(height);
glViewport(0, 0, width, height);
}
void loadModelToContext(std::string path, Core::RenderContext& context)
{
Assimp::Importer import;
const aiScene* scene = import.ReadFile(path, aiProcess_Triangulate | aiProcess_CalcTangentSpace);
if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
std::cout << "ERROR::ASSIMP::" << import.GetErrorString() << std::endl;
return;
}
context.initFromAssimpMesh(scene->mMeshes[0]);
}
void init(GLFWwindow* window)
{
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glEnable(GL_DEPTH_TEST);
program = shaderLoader.CreateProgram("shaders/shader_4_1.vert", "shaders/shader_4_1.frag");
loadModelToContext("./models/sphere.obj",sphereContext);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
glm::vec3 cameraSide = glm::normalize(glm::cross(cameraDir, glm::vec3(0.f,1.f,0.f)));
float angleSpeed = 0.05f;
float moveSpeed = 0.05f;
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(window, true);
}
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraDir * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraDir * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_X) == GLFW_PRESS)
cameraPos += cameraSide * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_Z) == GLFW_PRESS)
cameraPos -= cameraSide * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraDir = glm::vec3(glm::eulerAngleY(angleSpeed) * glm::vec4(cameraDir, 0));
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraDir = glm::vec3(glm::eulerAngleY(-angleSpeed) * glm::vec4(cameraDir, 0));
//cameraDir = glm::normalize(-cameraPos);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

47
cw 4/src/main.cpp Normal file
View File

@ -0,0 +1,47 @@
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include "ex_4_1.hpp"
int main(int argc, char** argv)
{
// inicjalizacja glfw
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// tworzenie okna za pomoca glfw
GLFWwindow* window = glfwCreateWindow(500, 500, "FirstWindow", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// ladowanie OpenGL za pomoca glew
glewInit();
glViewport(0, 0, 500, 500);
init(window);
// uruchomienie glownej petli
renderLoop(window);
shutdown(window);
glfwTerminate();
return 0;
}

291
cw 4/src/objload.h Normal file
View File

@ -0,0 +1,291 @@
/* Copyright (c) 2012, Gerhard Reitmayr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
#ifndef OBJLOAD_H_
#define OBJLOAD_H_
#include <algorithm>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <set>
#include <vector>
namespace obj {
struct Model {
std::vector<float> vertex; //< 3 * N entries
std::vector<float> texCoord; //< 2 * N entries
std::vector<float> normal; //< 3 * N entries
std::map<std::string, std::vector<unsigned short> > faces; //< assume triangels and uniform indexing
};
struct ObjModel {
struct FaceVertex {
FaceVertex() : v(-1), t(-1), n(-1) {}
int v, t, n;
bool operator<( const FaceVertex & other ) const;
bool operator==( const FaceVertex & other ) const;
};
typedef std::pair<std::vector<FaceVertex>, std::vector<unsigned> > FaceList;
std::vector<float> vertex; //< 3 * N entries
std::vector<float> texCoord; //< 2 * N entries
std::vector<float> normal; //< 3 * N entries
std::map<std::string, FaceList > faces;
};
inline ObjModel parseObjModel( std::istream & in);
inline void tesselateObjModel( ObjModel & obj);
inline ObjModel tesselateObjModel( const ObjModel & obj );
inline Model convertToModel( const ObjModel & obj );
inline Model loadModel( std::istream & in );
inline Model loadModelFromString( const std::string & in );
inline Model loadModelFromFile( const std::string & in );
inline std::ostream & operator<<( std::ostream & out, const Model & m );
inline std::ostream & operator<<( std::ostream & out, const ObjModel::FaceVertex & f);
// ---------------------------- Implementation starts here -----------------------
inline bool ObjModel::FaceVertex::operator<( const ObjModel::FaceVertex & other ) const {
return (v < other.v) || (v == other.v && t < other.t ) || (v == other.v && t == other.t && n < other.n);
}
inline bool ObjModel::FaceVertex::operator==( const ObjModel::FaceVertex & other ) const {
return (v == other.v && t == other.t && n == other.n);
}
template <typename T>
inline std::istream & operator>>(std::istream & in, std::vector<T> & vec ){
T temp;
if(in >> temp)
vec.push_back(temp);
return in;
}
template <typename T>
inline std::istream & operator>>(std::istream & in, std::set<T> & vec ){
T temp;
if(in >> temp)
vec.insert(temp);
return in;
}
inline std::istream & operator>>( std::istream & in, ObjModel::FaceVertex & f){
if(in >> f.v){
if(in.peek() == '/'){
in.get();
in >> f.t;
in.clear();
if(in.peek() == '/'){
in.get();
in >> f.n;
in.clear();
}
}
in.clear();
--f.v;
--f.t;
--f.n;
}
// std::cout << f << std::endl;
return in;
}
ObjModel parseObjModel( std::istream & in ){
char line[1024];
std::string op;
std::istringstream line_in;
std::set<std::string> groups;
groups.insert("default");
ObjModel data;
while(in.good()){
in.getline(line, 1023);
line_in.clear();
line_in.str(line);
if(!(line_in >> op))
continue;
if(op == "v")
line_in >> data.vertex >> data.vertex >> data.vertex;
else if(op == "vt")
line_in >> data.texCoord >> data.texCoord >> data.texCoord;
else if(op == "vn")
line_in >> data.normal >> data.normal >> data.normal;
else if(op == "g"){
groups.clear();
while(line_in >> groups) ;
groups.insert("default");
}
else if(op == "f") {
std::vector<ObjModel::FaceVertex> list;
while(line_in >> list) ;
for(std::set<std::string>::const_iterator g = groups.begin(); g != groups.end(); ++g){
ObjModel::FaceList & fl = data.faces[*g];
fl.second.push_back(fl.first.size());
fl.first.insert(fl.first.end(), list.begin(), list.end());
}
}
}
for(std::map<std::string, ObjModel::FaceList>::iterator g = data.faces.begin(); g != data.faces.end(); ++g){
ObjModel::FaceList & fl = g->second;
fl.second.push_back(fl.first.size());
}
return data;
}
inline void tesselateObjModel( std::vector<ObjModel::FaceVertex> & input, std::vector<unsigned> & input_start){
std::vector<ObjModel::FaceVertex> output;
std::vector<unsigned> output_start;
output.reserve(input.size());
output_start.reserve(input_start.size());
for(std::vector<unsigned>::const_iterator s = input_start.begin(); s != input_start.end() - 1; ++s){
const unsigned size = *(s+1) - *s;
if(size > 3){
const ObjModel::FaceVertex & start_vertex = input[*s];
for( int i = 1; i < (int)size-1; ++i){
output_start.push_back(output.size());
output.push_back(start_vertex);
output.push_back(input[*s+i]);
output.push_back(input[*s+i+1]);
}
} else {
output_start.push_back(output.size());
output.insert(output.end(), input.begin() + *s, input.begin() + *(s+1));
}
}
output_start.push_back(output.size());
input.swap(output);
input_start.swap(output_start);
}
void tesselateObjModel( ObjModel & obj){
for(std::map<std::string, ObjModel::FaceList>::iterator g = obj.faces.begin(); g != obj.faces.end(); ++g){
ObjModel::FaceList & fl = g->second;
tesselateObjModel(fl.first, fl.second);
}
}
Model convertToModel( const ObjModel & obj ) {
// insert all face vertices into a vector and make unique
std::vector<ObjModel::FaceVertex> unique(obj.faces.find("default")->second.first);
std::sort(unique.begin(), unique.end());
unique.erase( std::unique(unique.begin(), unique.end()), unique.end());
// build a new model with repeated vertices/texcoords/normals to have single indexing
Model model;
for(std::vector<ObjModel::FaceVertex>::const_iterator f = unique.begin(); f != unique.end(); ++f){
model.vertex.insert(model.vertex.end(), obj.vertex.begin() + 3*f->v, obj.vertex.begin() + 3*f->v + 3);
if(!obj.texCoord.empty()){
const int index = (f->t > -1) ? f->t : f->v;
model.texCoord.insert(model.texCoord.end(), obj.texCoord.begin() + 2*index, obj.texCoord.begin() + 2*index + 2);
}
if(!obj.normal.empty()){
const int index = (f->n > -1) ? f->n : f->v;
model.normal.insert(model.normal.end(), obj.normal.begin() + 3*index, obj.normal.begin() + 3*index + 3);
}
}
// look up unique index and transform face descriptions
for(std::map<std::string, ObjModel::FaceList>::const_iterator g = obj.faces.begin(); g != obj.faces.end(); ++g){
const std::string & name = g->first;
const ObjModel::FaceList & fl = g->second;
std::vector<unsigned short> & v = model.faces[g->first];
v.reserve(fl.first.size());
for(std::vector<ObjModel::FaceVertex>::const_iterator f = fl.first.begin(); f != fl.first.end(); ++f){
const unsigned short index = std::distance(unique.begin(), std::lower_bound(unique.begin(), unique.end(), *f));
v.push_back(index);
}
}
return model;
}
ObjModel tesselateObjModel( const ObjModel & obj ){
ObjModel result = obj;
tesselateObjModel(result);
return result;
}
Model loadModel( std::istream & in ){
ObjModel model = parseObjModel(in);
tesselateObjModel(model);
return convertToModel(model);
}
Model loadModelFromString( const std::string & str ){
std::istringstream in(str);
return loadModel(in);
}
Model loadModelFromFile( const std::string & str) {
std::ifstream in(str.c_str());
return loadModel(in);
}
inline std::ostream & operator<<( std::ostream & out, const ObjModel::FaceVertex & f){
out << f.v << "\t" << f.t << "\t" << f.n;
return out;
}
std::ostream & operator<<( std::ostream & out, const Model & m ){
if(!m.vertex.empty()){
out << "vertex\n";
for(int i = 0; i < (int)m.vertex.size(); ++i)
out << m.vertex[i] << (((i % 3) == 2)?"\n":"\t");
}
if(!m.texCoord.empty()){
out << "texCoord\n";
for(int i = 0; i < (int)m.texCoord.size(); ++i)
out << m.texCoord[i] << (((i % 2) == 1)?"\n":"\t");
}
if(!m.normal.empty()){
out << "normal\n";
for(int i = 0; i < (int)m.normal.size(); ++i)
out << m.normal[i] << (((i % 3) == 2)?"\n":"\t");
}
if(!m.faces.empty()){
out << "faces\t";
for(std::map<std::string, std::vector<unsigned short> >::const_iterator g = m.faces.begin(); g != m.faces.end(); ++g){
out << g->first << " ";
}
out << "\n";
// for(int i = 0; i < m.face.size(); ++i)
// out << m.face[i] << (((i % 3) == 2)?"\n":"\t");
}
return out;
}
} // namespace obj
#endif // OBJLOAD_H_

View File

@ -0,0 +1,29 @@
#version 430 core
uniform vec3 color;
uniform vec3 lightDir;
uniform vec3 lightColor;
uniform vec3 cameraPos;
uniform float time;
in vec3 vertexNormalOut;
out vec3 vertexPosOut;
out vec4 outColor;
void main()
{
vec3 normalizedVertexNormal = normalize(vertexNormalOut);
float intensity = dot(normalizedVertexNormal, -lightDir);
intensity = max(intensity, 0.0);
vec3 viewDir = normalize(cameraPos - vertexPosOut);
vec3 reflectDir = reflect(lightDir, normalizedVertexNormal);
float glossPow = 8;
float specular = pow(max(dot(viewDir, reflectDir), 0.0), glossPow);
float diffuse = intensity;
//outColor = vec4(lightColor * (color * diffuse + specular ), 1.0);
outColor = vec4(1.0);
}

View File

@ -0,0 +1,19 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
uniform mat4 modelMat;
out vec3 vertexNormalOut;
out vec3 vertexPosOut;
void main()
{
gl_Position = transformation * vec4(vertexPosition, 1.0);
vec4 worldNormal = modelMat * vec4(vertexNormal, 0.0);
vertexNormalOut = worldNormal.xyz;
vertexPosOut = (modelMat * vec4(vertexPosition, 1.0)).xyz;
}

View File

@ -0,0 +1,12 @@
#version 430 core
uniform vec3 color;
in vec3 interpNormal;
out vec4 out_color;
void main()
{
out_color = vec4(color, 1.0);
}

View File

@ -0,0 +1,15 @@
#version 430 core
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexNormal;
layout(location = 2) in vec2 vertexTexCoord;
uniform mat4 transformation;
void main()
{
gl_Position = transformation * vec4(vertexPosition, 1.0);
}

55
cw 5/src/Box.cpp Normal file
View File

@ -0,0 +1,55 @@
// dane 36 wierzcholkow i kolorow opisujace model pudelka
const float box[] = {
// points colors
0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.5f, 0.5f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, 0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-0.25f, 0.25f, -0.75f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, -0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.25f, -0.25f, 0.75f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f,
};

31
cw 5/src/Camera.cpp Normal file
View File

@ -0,0 +1,31 @@
#include "Camera.h"
glm::mat4 Core::createPerspectiveMatrix(float zNear, float zFar, float frustumScale)
{
glm::mat4 perspective;
perspective[0][0] = 1.f;
perspective[1][1] = frustumScale;
perspective[2][2] = (zFar + zNear) / (zNear - zFar);
perspective[3][2] = (2 * zFar * zNear) / (zNear - zFar);
perspective[2][3] = -1;
perspective[3][3] = 0;
return perspective;
}
glm::mat4 Core::createViewMatrix( glm::vec3 position, glm::vec3 forward, glm::vec3 up )
{
glm::vec3 side = glm::cross(forward, up);
// Trzeba pamietac o minusie przy ustawianiu osi Z kamery.
// Wynika to z tego, ze standardowa macierz perspektywiczna zaklada, ze "z przodu" jest ujemna (a nie dodatnia) czesc osi Z.
glm::mat4 cameraRotation;
cameraRotation[0][0] = side.x; cameraRotation[1][0] = side.y; cameraRotation[2][0] = side.z;
cameraRotation[0][1] = up.x; cameraRotation[1][1] = up.y; cameraRotation[2][1] = up.z;
cameraRotation[0][2] = -forward.x; cameraRotation[1][2] = -forward.y; cameraRotation[2][2] = -forward.z;
glm::mat4 cameraTranslation;
cameraTranslation[3] = glm::vec4(-position, 1.0f);
return cameraRotation * cameraTranslation;
}

14
cw 5/src/Camera.h Normal file
View File

@ -0,0 +1,14 @@
#pragma once
#include "glm.hpp"
namespace Core
{
glm::mat4 createPerspectiveMatrix(float zNear = 0.1f, float zFar = 100.0f, float frustumScale = 1.f);
// position - pozycja kamery
// forward - wektor "do przodu" kamery (jednostkowy)
// up - wektor "w gore" kamery (jednostkowy)
// up i forward musza byc ortogonalne!
glm::mat4 createViewMatrix(glm::vec3 position, glm::vec3 forward, glm::vec3 up);
}

128
cw 5/src/Render_Utils.cpp Normal file
View File

@ -0,0 +1,128 @@
#include "Render_Utils.h"
#include <algorithm>
#include "glew.h"
#include "freeglut.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
void Core::RenderContext::initFromAssimpMesh(aiMesh* mesh) {
vertexArray = 0;
vertexBuffer = 0;
vertexIndexBuffer = 0;
std::vector<float> textureCoord;
std::vector<unsigned int> indices;
//tex coord must be converted to 2d vecs
for (unsigned int i = 0; i < mesh->mNumVertices; i++)
{
if (mesh->mTextureCoords[0] != nullptr) {
textureCoord.push_back(mesh->mTextureCoords[0][i].x);
textureCoord.push_back(mesh->mTextureCoords[0][i].y);
}
else {
textureCoord.push_back(0.0f);
textureCoord.push_back(0.0f);
}
}
if (mesh->mTextureCoords[0] == nullptr) {
std::cout << "no uv coords\n";
}
for (unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// retrieve all indices of the face and store them in the indices vector
for (unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
unsigned int vertexDataBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexNormalBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexTexBufferSize = sizeof(float) * mesh->mNumVertices * 2;
unsigned int vertexTangentBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexBiTangentBufferSize = sizeof(float) * mesh->mNumVertices * 3;
unsigned int vertexElementBufferSize = sizeof(unsigned int) * indices.size();
size = indices.size();
glGenVertexArrays(1, &vertexArray);
glBindVertexArray(vertexArray);
glGenBuffers(1, &vertexIndexBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertexIndexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexElementBufferSize, &indices[0], GL_STATIC_DRAW);
glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
//std::cout << vertexBuffer;
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glEnableVertexAttribArray(3);
glEnableVertexAttribArray(4);
glBufferData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize + vertexTangentBufferSize + vertexBiTangentBufferSize, NULL, GL_STATIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexDataBufferSize, mesh->mVertices);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize, vertexNormalBufferSize, mesh->mNormals);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize, vertexTexBufferSize, &textureCoord[0]);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize, vertexTangentBufferSize, mesh->mTangents);
glBufferSubData(GL_ARRAY_BUFFER, vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize + vertexTangentBufferSize, vertexBiTangentBufferSize, mesh->mBitangents);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void*)(0));
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, (void*)(vertexDataBufferSize));
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 0, (void*)(vertexNormalBufferSize + vertexDataBufferSize));
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 0, (void*)(vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize));
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, 0, (void*)(vertexDataBufferSize + vertexNormalBufferSize + vertexTexBufferSize + vertexTangentBufferSize));
}
void Core::DrawVertexArray(const float * vertexArray, int numVertices, int elementSize )
{
glVertexAttribPointer(0, elementSize, GL_FLOAT, false, 0, vertexArray);
glEnableVertexAttribArray(0);
glDrawArrays(GL_TRIANGLES, 0, numVertices);
}
void Core::DrawVertexArrayIndexed( const float * vertexArray, const int * indexArray, int numIndexes, int elementSize )
{
glVertexAttribPointer(0, elementSize, GL_FLOAT, false, 0, vertexArray);
glEnableVertexAttribArray(0);
glDrawElements(GL_TRIANGLES, numIndexes, GL_UNSIGNED_INT, indexArray);
}
void Core::DrawVertexArray( const VertexData & data )
{
int numAttribs = std::min(VertexData::MAX_ATTRIBS, data.NumActiveAttribs);
for(int i = 0; i < numAttribs; i++)
{
glVertexAttribPointer(i, data.Attribs[i].Size, GL_FLOAT, false, 0, data.Attribs[i].Pointer);
glEnableVertexAttribArray(i);
}
glDrawArrays(GL_TRIANGLES, 0, data.NumVertices);
}
void Core::DrawContext(Core::RenderContext& context)
{
glBindVertexArray(context.vertexArray);
glDrawElements(
GL_TRIANGLES, // mode
context.size, // count
GL_UNSIGNED_INT, // type
(void*)0 // element array buffer offset
);
glBindVertexArray(0);
}

72
cw 5/src/Render_Utils.h Normal file
View File

@ -0,0 +1,72 @@
#pragma once
#include "glm.hpp"
#include "glew.h"
#include "objload.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#define BUFFER_OFFSET(i) ((char *)NULL + (i))
namespace Core
{
struct RenderContext
{
GLuint vertexArray;
GLuint vertexBuffer;
GLuint vertexIndexBuffer;
int size = 0;
void initFromOBJ(obj::Model& model);
void initFromAssimpMesh(aiMesh* mesh);
};
// vertexArray - jednowymiarowa tablica zawierajaca wartosci opisujace pozycje kolejnych wierzcholkow w jednym ciagu (x1, y1, z1, w1, x2, y2, z2, w2, ...)
// numVertices - liczba wierzcholkow do narysowania
// elementSize - liczba wartosci opisujacych pojedynczy wierzcholek (np. 3 gdy wierzcholek opisany jest trojka (x, y, z))
void DrawVertexArray(const float * vertexArray, int numVertices, int elementSize);
// indexArray - jednowymiarowa tablica zawierajaca indeksy wierzcholkow kolejnych trojkatow w jednym ciagu (t1_i1, t1_i2, t1_i3, t2_i1, t2_i2, t2_i3, ...)
// numIndexes - liczba indeksow w tablicy indexArray
void DrawVertexArrayIndexed(const float * vertexArray, const int * indexArray, int numIndexes, int elementSize);
struct VertexAttribute
{
const void * Pointer;
int Size;
};
struct VertexData
{
static const int MAX_ATTRIBS = 8;
VertexAttribute Attribs[MAX_ATTRIBS];
int NumActiveAttribs;
int NumVertices;
};
// Ta funkcja sluzy do rysowania trojkatow, ktorych wierzcholki moga byc opisane wiecej niz jednym atrybutem.
// Funkcja przyjmuje jako parametr strukture, w ktorej nalezy zawrzec wszystkie potrzebne dane.
//
// Przykladowe wywolanie funkcji - narysowanie trojkata jak na pierwszych zajeciach:
/*
const float vertices[] = {
0.25f, 0.25f, 0.0f, 1.0f,
0.25f, -0.25f, 0.0f, 1.0f,
-0.25f, -0.25f, 0.0f, 1.0f
};
Core::VertexData vertexData;
vertexData.NumActiveAttribs = 1; // Liczba uzywanych atrybutow wierzcholka
vertexData.Attribs[0].Pointer = vertices; // Wskaznik na dane zerowego atrybutu
vertexData.Attribs[0].Size = 4; // Wielkosc zerowego atrybutu (ilosc liczb opisujacych ten atrybut w pojedynczym wierzcholku)
vertexData.NumVertices = 3; // Liczba wierzcholkow do narysowania
Core::DrawVertexArray(vertexData);
*/
void DrawVertexArray(const VertexData & data);
void DrawContext(RenderContext& context);
}

2024
cw 5/src/SOIL/SOIL.c Normal file

File diff suppressed because it is too large Load Diff

433
cw 5/src/SOIL/SOIL.h Normal file
View File

@ -0,0 +1,433 @@
/**
@mainpage SOIL
Jonathan Dummer
2007-07-26-10.36
Simple OpenGL Image Library
A tiny c library for uploading images as
textures into OpenGL. Also saving and
loading of images is supported.
I'm using Sean's Tool Box image loader as a base:
http://www.nothings.org/
I'm upgrading it to load TGA and DDS files, and a direct
path for loading DDS files straight into OpenGL textures,
when applicable.
Image Formats:
- BMP load & save
- TGA load & save
- DDS load & save
- PNG load
- JPG load
OpenGL Texture Features:
- resample to power-of-two sizes
- MIPmap generation
- compressed texture S3TC formats (if supported)
- can pre-multiply alpha for you, for better compositing
- can flip image about the y-axis (except pre-compressed DDS files)
Thanks to:
* Sean Barret - for the awesome stb_image
* Dan Venkitachalam - for finding some non-compliant DDS files, and patching some explicit casts
* everybody at gamedev.net
**/
#ifndef HEADER_SIMPLE_OPENGL_IMAGE_LIBRARY
#define HEADER_SIMPLE_OPENGL_IMAGE_LIBRARY
#ifdef __cplusplus
extern "C" {
#endif
/**
The format of images that may be loaded (force_channels).
SOIL_LOAD_AUTO leaves the image in whatever format it was found.
SOIL_LOAD_L forces the image to load as Luminous (greyscale)
SOIL_LOAD_LA forces the image to load as Luminous with Alpha
SOIL_LOAD_RGB forces the image to load as Red Green Blue
SOIL_LOAD_RGBA forces the image to load as Red Green Blue Alpha
**/
enum
{
SOIL_LOAD_AUTO = 0,
SOIL_LOAD_L = 1,
SOIL_LOAD_LA = 2,
SOIL_LOAD_RGB = 3,
SOIL_LOAD_RGBA = 4
};
/**
Passed in as reuse_texture_ID, will cause SOIL to
register a new texture ID using glGenTextures().
If the value passed into reuse_texture_ID > 0 then
SOIL will just re-use that texture ID (great for
reloading image assets in-game!)
**/
enum
{
SOIL_CREATE_NEW_ID = 0
};
/**
flags you can pass into SOIL_load_OGL_texture()
and SOIL_create_OGL_texture().
(note that if SOIL_FLAG_DDS_LOAD_DIRECT is used
the rest of the flags with the exception of
SOIL_FLAG_TEXTURE_REPEATS will be ignored while
loading already-compressed DDS files.)
SOIL_FLAG_POWER_OF_TWO: force the image to be POT
SOIL_FLAG_MIPMAPS: generate mipmaps for the texture
SOIL_FLAG_TEXTURE_REPEATS: otherwise will clamp
SOIL_FLAG_MULTIPLY_ALPHA: for using (GL_ONE,GL_ONE_MINUS_SRC_ALPHA) blending
SOIL_FLAG_INVERT_Y: flip the image vertically
SOIL_FLAG_COMPRESS_TO_DXT: if the card can display them, will convert RGB to DXT1, RGBA to DXT5
SOIL_FLAG_DDS_LOAD_DIRECT: will load DDS files directly without _ANY_ additional processing
SOIL_FLAG_NTSC_SAFE_RGB: clamps RGB components to the range [16,235]
SOIL_FLAG_CoCg_Y: Google YCoCg; RGB=>CoYCg, RGBA=>CoCgAY
SOIL_FLAG_TEXTURE_RECTANGE: uses ARB_texture_rectangle ; pixel indexed & no repeat or MIPmaps or cubemaps
**/
enum
{
SOIL_FLAG_POWER_OF_TWO = 1,
SOIL_FLAG_MIPMAPS = 2,
SOIL_FLAG_TEXTURE_REPEATS = 4,
SOIL_FLAG_MULTIPLY_ALPHA = 8,
SOIL_FLAG_INVERT_Y = 16,
SOIL_FLAG_COMPRESS_TO_DXT = 32,
SOIL_FLAG_DDS_LOAD_DIRECT = 64,
SOIL_FLAG_NTSC_SAFE_RGB = 128,
SOIL_FLAG_CoCg_Y = 256,
SOIL_FLAG_TEXTURE_RECTANGLE = 512
};
/**
The types of images that may be saved.
(TGA supports uncompressed RGB / RGBA)
(BMP supports uncompressed RGB)
(DDS supports DXT1 and DXT5)
**/
enum
{
SOIL_SAVE_TYPE_TGA = 0,
SOIL_SAVE_TYPE_BMP = 1,
SOIL_SAVE_TYPE_DDS = 2
};
/**
Defines the order of faces in a DDS cubemap.
I recommend that you use the same order in single
image cubemap files, so they will be interchangeable
with DDS cubemaps when using SOIL.
**/
#define SOIL_DDS_CUBEMAP_FACE_ORDER "EWUDNS"
/**
The types of internal fake HDR representations
SOIL_HDR_RGBE: RGB * pow( 2.0, A - 128.0 )
SOIL_HDR_RGBdivA: RGB / A
SOIL_HDR_RGBdivA2: RGB / (A*A)
**/
enum
{
SOIL_HDR_RGBE = 0,
SOIL_HDR_RGBdivA = 1,
SOIL_HDR_RGBdivA2 = 2
};
/**
Loads an image from disk into an OpenGL texture.
\param filename the name of the file to upload as a texture
\param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_load_OGL_texture
(
const char *filename,
int force_channels,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Loads 6 images from disk into an OpenGL cubemap texture.
\param x_pos_file the name of the file to upload as the +x cube face
\param x_neg_file the name of the file to upload as the -x cube face
\param y_pos_file the name of the file to upload as the +y cube face
\param y_neg_file the name of the file to upload as the -y cube face
\param z_pos_file the name of the file to upload as the +z cube face
\param z_neg_file the name of the file to upload as the -z cube face
\param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_load_OGL_cubemap
(
const char *x_pos_file,
const char *x_neg_file,
const char *y_pos_file,
const char *y_neg_file,
const char *z_pos_file,
const char *z_neg_file,
int force_channels,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Loads 1 image from disk and splits it into an OpenGL cubemap texture.
\param filename the name of the file to upload as a texture
\param face_order the order of the faces in the file, any combination of NSWEUD, for North, South, Up, etc.
\param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_load_OGL_single_cubemap
(
const char *filename,
const char face_order[6],
int force_channels,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Loads an HDR image from disk into an OpenGL texture.
\param filename the name of the file to upload as a texture
\param fake_HDR_format SOIL_HDR_RGBE, SOIL_HDR_RGBdivA, SOIL_HDR_RGBdivA2
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_load_OGL_HDR_texture
(
const char *filename,
int fake_HDR_format,
int rescale_to_max,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Loads an image from RAM into an OpenGL texture.
\param buffer the image data in RAM just as if it were still in a file
\param buffer_length the size of the buffer in bytes
\param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_load_OGL_texture_from_memory
(
const unsigned char *const buffer,
int buffer_length,
int force_channels,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Loads 6 images from memory into an OpenGL cubemap texture.
\param x_pos_buffer the image data in RAM to upload as the +x cube face
\param x_pos_buffer_length the size of the above buffer
\param x_neg_buffer the image data in RAM to upload as the +x cube face
\param x_neg_buffer_length the size of the above buffer
\param y_pos_buffer the image data in RAM to upload as the +x cube face
\param y_pos_buffer_length the size of the above buffer
\param y_neg_buffer the image data in RAM to upload as the +x cube face
\param y_neg_buffer_length the size of the above buffer
\param z_pos_buffer the image data in RAM to upload as the +x cube face
\param z_pos_buffer_length the size of the above buffer
\param z_neg_buffer the image data in RAM to upload as the +x cube face
\param z_neg_buffer_length the size of the above buffer
\param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_load_OGL_cubemap_from_memory
(
const unsigned char *const x_pos_buffer,
int x_pos_buffer_length,
const unsigned char *const x_neg_buffer,
int x_neg_buffer_length,
const unsigned char *const y_pos_buffer,
int y_pos_buffer_length,
const unsigned char *const y_neg_buffer,
int y_neg_buffer_length,
const unsigned char *const z_pos_buffer,
int z_pos_buffer_length,
const unsigned char *const z_neg_buffer,
int z_neg_buffer_length,
int force_channels,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Loads 1 image from RAM and splits it into an OpenGL cubemap texture.
\param buffer the image data in RAM just as if it were still in a file
\param buffer_length the size of the buffer in bytes
\param face_order the order of the faces in the file, any combination of NSWEUD, for North, South, Up, etc.
\param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_load_OGL_single_cubemap_from_memory
(
const unsigned char *const buffer,
int buffer_length,
const char face_order[6],
int force_channels,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Creates a 2D OpenGL texture from raw image data. Note that the raw data is
_NOT_ freed after the upload (so the user can load various versions).
\param data the raw data to be uploaded as an OpenGL texture
\param width the width of the image in pixels
\param height the height of the image in pixels
\param channels the number of channels: 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_create_OGL_texture
(
const unsigned char *const data,
int width, int height, int channels,
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Creates an OpenGL cubemap texture by splitting up 1 image into 6 parts.
\param data the raw data to be uploaded as an OpenGL texture
\param width the width of the image in pixels
\param height the height of the image in pixels
\param channels the number of channels: 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA
\param face_order the order of the faces in the file, and combination of NSWEUD, for North, South, Up, etc.
\param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture)
\param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT
\return 0-failed, otherwise returns the OpenGL texture handle
**/
unsigned int
SOIL_create_OGL_single_cubemap
(
const unsigned char *const data,
int width, int height, int channels,
const char face_order[6],
unsigned int reuse_texture_ID,
unsigned int flags
);
/**
Captures the OpenGL window (RGB) and saves it to disk
\return 0 if it failed, otherwise returns 1
**/
int
SOIL_save_screenshot
(
const char *filename,
int image_type,
int x, int y,
int width, int height
);
/**
Loads an image from disk into an array of unsigned chars.
Note that *channels return the original channel count of the
image. If force_channels was other than SOIL_LOAD_AUTO,
the resulting image has force_channels, but *channels may be
different (if the original image had a different channel
count).
\return 0 if failed, otherwise returns 1
**/
unsigned char*
SOIL_load_image
(
const char *filename,
int *width, int *height, int *channels,
int force_channels
);
/**
Loads an image from memory into an array of unsigned chars.
Note that *channels return the original channel count of the
image. If force_channels was other than SOIL_LOAD_AUTO,
the resulting image has force_channels, but *channels may be
different (if the original image had a different channel
count).
\return 0 if failed, otherwise returns 1
**/
unsigned char*
SOIL_load_image_from_memory
(
const unsigned char *const buffer,
int buffer_length,
int *width, int *height, int *channels,
int force_channels
);
/**
Saves an image from an array of unsigned chars (RGBA) to disk
\return 0 if failed, otherwise returns 1
**/
int
SOIL_save_image
(
const char *filename,
int image_type,
int width, int height, int channels,
const unsigned char *const data
);
/**
Frees the image data (note, this is just C's "free()"...this function is
present mostly so C++ programmers don't forget to use "free()" and call
"delete []" instead [8^)
**/
void
SOIL_free_image_data
(
unsigned char *img_data
);
/**
This function resturn a pointer to a string describing the last thing
that happened inside SOIL. It can be used to determine why an image
failed to load.
**/
const char*
SOIL_last_result
(
void
);
#ifdef __cplusplus
}
#endif
#endif /* HEADER_SIMPLE_OPENGL_IMAGE_LIBRARY */

632
cw 5/src/SOIL/image_DXT.c Normal file
View File

@ -0,0 +1,632 @@
/*
Jonathan Dummer
2007-07-31-10.32
simple DXT compression / decompression code
public domain
*/
#include "image_DXT.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
/* set this =1 if you want to use the covarince matrix method...
which is better than my method of using standard deviations
overall, except on the infintesimal chance that the power
method fails for finding the largest eigenvector */
#define USE_COV_MAT 1
/********* Function Prototypes *********/
/*
Takes a 4x4 block of pixels and compresses it into 8 bytes
in DXT1 format (color only, no alpha). Speed is valued
over prettyness, at least for now.
*/
void compress_DDS_color_block(
int channels,
const unsigned char *const uncompressed,
unsigned char compressed[8] );
/*
Takes a 4x4 block of pixels and compresses the alpha
component it into 8 bytes for use in DXT5 DDS files.
Speed is valued over prettyness, at least for now.
*/
void compress_DDS_alpha_block(
const unsigned char *const uncompressed,
unsigned char compressed[8] );
/********* Actual Exposed Functions *********/
int
save_image_as_DDS
(
const char *filename,
int width, int height, int channels,
const unsigned char *const data
)
{
/* variables */
FILE *fout;
unsigned char *DDS_data;
DDS_header header;
int DDS_size;
/* error check */
if( (NULL == filename) ||
(width < 1) || (height < 1) ||
(channels < 1) || (channels > 4) ||
(data == NULL ) )
{
return 0;
}
/* Convert the image */
if( (channels & 1) == 1 )
{
/* no alpha, just use DXT1 */
DDS_data = convert_image_to_DXT1( data, width, height, channels, &DDS_size );
} else
{
/* has alpha, so use DXT5 */
DDS_data = convert_image_to_DXT5( data, width, height, channels, &DDS_size );
}
/* save it */
memset( &header, 0, sizeof( DDS_header ) );
header.dwMagic = ('D' << 0) | ('D' << 8) | ('S' << 16) | (' ' << 24);
header.dwSize = 124;
header.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT | DDSD_LINEARSIZE;
header.dwWidth = width;
header.dwHeight = height;
header.dwPitchOrLinearSize = DDS_size;
header.sPixelFormat.dwSize = 32;
header.sPixelFormat.dwFlags = DDPF_FOURCC;
if( (channels & 1) == 1 )
{
header.sPixelFormat.dwFourCC = ('D' << 0) | ('X' << 8) | ('T' << 16) | ('1' << 24);
} else
{
header.sPixelFormat.dwFourCC = ('D' << 0) | ('X' << 8) | ('T' << 16) | ('5' << 24);
}
header.sCaps.dwCaps1 = DDSCAPS_TEXTURE;
/* write it out */
fout = fopen( filename, "wb");
fwrite( &header, sizeof( DDS_header ), 1, fout );
fwrite( DDS_data, 1, DDS_size, fout );
fclose( fout );
/* done */
free( DDS_data );
return 1;
}
unsigned char* convert_image_to_DXT1(
const unsigned char *const uncompressed,
int width, int height, int channels,
int *out_size )
{
unsigned char *compressed;
int i, j, x, y;
unsigned char ublock[16*3];
unsigned char cblock[8];
int index = 0, chan_step = 1;
int block_count = 0;
/* error check */
*out_size = 0;
if( (width < 1) || (height < 1) ||
(NULL == uncompressed) ||
(channels < 1) || (channels > 4) )
{
return NULL;
}
/* for channels == 1 or 2, I do not step forward for R,G,B values */
if( channels < 3 )
{
chan_step = 0;
}
/* get the RAM for the compressed image
(8 bytes per 4x4 pixel block) */
*out_size = ((width+3) >> 2) * ((height+3) >> 2) * 8;
compressed = (unsigned char*)malloc( *out_size );
/* go through each block */
for( j = 0; j < height; j += 4 )
{
for( i = 0; i < width; i += 4 )
{
/* copy this block into a new one */
int idx = 0;
int mx = 4, my = 4;
if( j+4 >= height )
{
my = height - j;
}
if( i+4 >= width )
{
mx = width - i;
}
for( y = 0; y < my; ++y )
{
for( x = 0; x < mx; ++x )
{
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels];
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step];
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step+chan_step];
}
for( x = mx; x < 4; ++x )
{
ublock[idx++] = ublock[0];
ublock[idx++] = ublock[1];
ublock[idx++] = ublock[2];
}
}
for( y = my; y < 4; ++y )
{
for( x = 0; x < 4; ++x )
{
ublock[idx++] = ublock[0];
ublock[idx++] = ublock[1];
ublock[idx++] = ublock[2];
}
}
/* compress the block */
++block_count;
compress_DDS_color_block( 3, ublock, cblock );
/* copy the data from the block into the main block */
for( x = 0; x < 8; ++x )
{
compressed[index++] = cblock[x];
}
}
}
return compressed;
}
unsigned char* convert_image_to_DXT5(
const unsigned char *const uncompressed,
int width, int height, int channels,
int *out_size )
{
unsigned char *compressed;
int i, j, x, y;
unsigned char ublock[16*4];
unsigned char cblock[8];
int index = 0, chan_step = 1;
int block_count = 0, has_alpha;
/* error check */
*out_size = 0;
if( (width < 1) || (height < 1) ||
(NULL == uncompressed) ||
(channels < 1) || ( channels > 4) )
{
return NULL;
}
/* for channels == 1 or 2, I do not step forward for R,G,B vales */
if( channels < 3 )
{
chan_step = 0;
}
/* # channels = 1 or 3 have no alpha, 2 & 4 do have alpha */
has_alpha = 1 - (channels & 1);
/* get the RAM for the compressed image
(16 bytes per 4x4 pixel block) */
*out_size = ((width+3) >> 2) * ((height+3) >> 2) * 16;
compressed = (unsigned char*)malloc( *out_size );
/* go through each block */
for( j = 0; j < height; j += 4 )
{
for( i = 0; i < width; i += 4 )
{
/* local variables, and my block counter */
int idx = 0;
int mx = 4, my = 4;
if( j+4 >= height )
{
my = height - j;
}
if( i+4 >= width )
{
mx = width - i;
}
for( y = 0; y < my; ++y )
{
for( x = 0; x < mx; ++x )
{
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels];
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step];
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step+chan_step];
ublock[idx++] =
has_alpha * uncompressed[(j+y)*width*channels+(i+x)*channels+channels-1]
+ (1-has_alpha)*255;
}
for( x = mx; x < 4; ++x )
{
ublock[idx++] = ublock[0];
ublock[idx++] = ublock[1];
ublock[idx++] = ublock[2];
ublock[idx++] = ublock[3];
}
}
for( y = my; y < 4; ++y )
{
for( x = 0; x < 4; ++x )
{
ublock[idx++] = ublock[0];
ublock[idx++] = ublock[1];
ublock[idx++] = ublock[2];
ublock[idx++] = ublock[3];
}
}
/* now compress the alpha block */
compress_DDS_alpha_block( ublock, cblock );
/* copy the data from the compressed alpha block into the main buffer */
for( x = 0; x < 8; ++x )
{
compressed[index++] = cblock[x];
}
/* then compress the color block */
++block_count;
compress_DDS_color_block( 4, ublock, cblock );
/* copy the data from the compressed color block into the main buffer */
for( x = 0; x < 8; ++x )
{
compressed[index++] = cblock[x];
}
}
}
return compressed;
}
/********* Helper Functions *********/
int convert_bit_range( int c, int from_bits, int to_bits )
{
int b = (1 << (from_bits - 1)) + c * ((1 << to_bits) - 1);
return (b + (b >> from_bits)) >> from_bits;
}
int rgb_to_565( int r, int g, int b )
{
return
(convert_bit_range( r, 8, 5 ) << 11) |
(convert_bit_range( g, 8, 6 ) << 05) |
(convert_bit_range( b, 8, 5 ) << 00);
}
void rgb_888_from_565( unsigned int c, int *r, int *g, int *b )
{
*r = convert_bit_range( (c >> 11) & 31, 5, 8 );
*g = convert_bit_range( (c >> 05) & 63, 6, 8 );
*b = convert_bit_range( (c >> 00) & 31, 5, 8 );
}
void compute_color_line_STDEV(
const unsigned char *const uncompressed,
int channels,
float point[3], float direction[3] )
{
const float inv_16 = 1.0f / 16.0f;
int i;
float sum_r = 0.0f, sum_g = 0.0f, sum_b = 0.0f;
float sum_rr = 0.0f, sum_gg = 0.0f, sum_bb = 0.0f;
float sum_rg = 0.0f, sum_rb = 0.0f, sum_gb = 0.0f;
/* calculate all data needed for the covariance matrix
( to compare with _rygdxt code) */
for( i = 0; i < 16*channels; i += channels )
{
sum_r += uncompressed[i+0];
sum_rr += uncompressed[i+0] * uncompressed[i+0];
sum_g += uncompressed[i+1];
sum_gg += uncompressed[i+1] * uncompressed[i+1];
sum_b += uncompressed[i+2];
sum_bb += uncompressed[i+2] * uncompressed[i+2];
sum_rg += uncompressed[i+0] * uncompressed[i+1];
sum_rb += uncompressed[i+0] * uncompressed[i+2];
sum_gb += uncompressed[i+1] * uncompressed[i+2];
}
/* convert the sums to averages */
sum_r *= inv_16;
sum_g *= inv_16;
sum_b *= inv_16;
/* and convert the squares to the squares of the value - avg_value */
sum_rr -= 16.0f * sum_r * sum_r;
sum_gg -= 16.0f * sum_g * sum_g;
sum_bb -= 16.0f * sum_b * sum_b;
sum_rg -= 16.0f * sum_r * sum_g;
sum_rb -= 16.0f * sum_r * sum_b;
sum_gb -= 16.0f * sum_g * sum_b;
/* the point on the color line is the average */
point[0] = sum_r;
point[1] = sum_g;
point[2] = sum_b;
#if USE_COV_MAT
/*
The following idea was from ryg.
(https://mollyrocket.com/forums/viewtopic.php?t=392)
The method worked great (less RMSE than mine) most of
the time, but had some issues handling some simple
boundary cases, like full green next to full red,
which would generate a covariance matrix like this:
| 1 -1 0 |
| -1 1 0 |
| 0 0 0 |
For a given starting vector, the power method can
generate all zeros! So no starting with {1,1,1}
as I was doing! This kind of error is still a
slight posibillity, but will be very rare.
*/
/* use the covariance matrix directly
(1st iteration, don't use all 1.0 values!) */
sum_r = 1.0f;
sum_g = 2.718281828f;
sum_b = 3.141592654f;
direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb;
direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb;
direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb;
/* 2nd iteration, use results from the 1st guy */
sum_r = direction[0];
sum_g = direction[1];
sum_b = direction[2];
direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb;
direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb;
direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb;
/* 3rd iteration, use results from the 2nd guy */
sum_r = direction[0];
sum_g = direction[1];
sum_b = direction[2];
direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb;
direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb;
direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb;
#else
/* use my standard deviation method
(very robust, a tiny bit slower and less accurate) */
direction[0] = sqrt( sum_rr );
direction[1] = sqrt( sum_gg );
direction[2] = sqrt( sum_bb );
/* which has a greater component */
if( sum_gg > sum_rr )
{
/* green has greater component, so base the other signs off of green */
if( sum_rg < 0.0f )
{
direction[0] = -direction[0];
}
if( sum_gb < 0.0f )
{
direction[2] = -direction[2];
}
} else
{
/* red has a greater component */
if( sum_rg < 0.0f )
{
direction[1] = -direction[1];
}
if( sum_rb < 0.0f )
{
direction[2] = -direction[2];
}
}
#endif
}
void LSE_master_colors_max_min(
int *cmax, int *cmin,
int channels,
const unsigned char *const uncompressed )
{
int i, j;
/* the master colors */
int c0[3], c1[3];
/* used for fitting the line */
float sum_x[] = { 0.0f, 0.0f, 0.0f };
float sum_x2[] = { 0.0f, 0.0f, 0.0f };
float dot_max = 1.0f, dot_min = -1.0f;
float vec_len2 = 0.0f;
float dot;
/* error check */
if( (channels < 3) || (channels > 4) )
{
return;
}
compute_color_line_STDEV( uncompressed, channels, sum_x, sum_x2 );
vec_len2 = 1.0f / ( 0.00001f +
sum_x2[0]*sum_x2[0] + sum_x2[1]*sum_x2[1] + sum_x2[2]*sum_x2[2] );
/* finding the max and min vector values */
dot_max =
(
sum_x2[0] * uncompressed[0] +
sum_x2[1] * uncompressed[1] +
sum_x2[2] * uncompressed[2]
);
dot_min = dot_max;
for( i = 1; i < 16; ++i )
{
dot =
(
sum_x2[0] * uncompressed[i*channels+0] +
sum_x2[1] * uncompressed[i*channels+1] +
sum_x2[2] * uncompressed[i*channels+2]
);
if( dot < dot_min )
{
dot_min = dot;
} else if( dot > dot_max )
{
dot_max = dot;
}
}
/* and the offset (from the average location) */
dot = sum_x2[0]*sum_x[0] + sum_x2[1]*sum_x[1] + sum_x2[2]*sum_x[2];
dot_min -= dot;
dot_max -= dot;
/* post multiply by the scaling factor */
dot_min *= vec_len2;
dot_max *= vec_len2;
/* OK, build the master colors */
for( i = 0; i < 3; ++i )
{
/* color 0 */
c0[i] = (int)(0.5f + sum_x[i] + dot_max * sum_x2[i]);
if( c0[i] < 0 )
{
c0[i] = 0;
} else if( c0[i] > 255 )
{
c0[i] = 255;
}
/* color 1 */
c1[i] = (int)(0.5f + sum_x[i] + dot_min * sum_x2[i]);
if( c1[i] < 0 )
{
c1[i] = 0;
} else if( c1[i] > 255 )
{
c1[i] = 255;
}
}
/* down_sample (with rounding?) */
i = rgb_to_565( c0[0], c0[1], c0[2] );
j = rgb_to_565( c1[0], c1[1], c1[2] );
if( i > j )
{
*cmax = i;
*cmin = j;
} else
{
*cmax = j;
*cmin = i;
}
}
void
compress_DDS_color_block
(
int channels,
const unsigned char *const uncompressed,
unsigned char compressed[8]
)
{
/* variables */
int i;
int next_bit;
int enc_c0, enc_c1;
int c0[4], c1[4];
float color_line[] = { 0.0f, 0.0f, 0.0f, 0.0f };
float vec_len2 = 0.0f, dot_offset = 0.0f;
/* stupid order */
int swizzle4[] = { 0, 2, 3, 1 };
/* get the master colors */
LSE_master_colors_max_min( &enc_c0, &enc_c1, channels, uncompressed );
/* store the 565 color 0 and color 1 */
compressed[0] = (enc_c0 >> 0) & 255;
compressed[1] = (enc_c0 >> 8) & 255;
compressed[2] = (enc_c1 >> 0) & 255;
compressed[3] = (enc_c1 >> 8) & 255;
/* zero out the compressed data */
compressed[4] = 0;
compressed[5] = 0;
compressed[6] = 0;
compressed[7] = 0;
/* reconstitute the master color vectors */
rgb_888_from_565( enc_c0, &c0[0], &c0[1], &c0[2] );
rgb_888_from_565( enc_c1, &c1[0], &c1[1], &c1[2] );
/* the new vector */
vec_len2 = 0.0f;
for( i = 0; i < 3; ++i )
{
color_line[i] = (float)(c1[i] - c0[i]);
vec_len2 += color_line[i] * color_line[i];
}
if( vec_len2 > 0.0f )
{
vec_len2 = 1.0f / vec_len2;
}
/* pre-proform the scaling */
color_line[0] *= vec_len2;
color_line[1] *= vec_len2;
color_line[2] *= vec_len2;
/* compute the offset (constant) portion of the dot product */
dot_offset = color_line[0]*c0[0] + color_line[1]*c0[1] + color_line[2]*c0[2];
/* store the rest of the bits */
next_bit = 8*4;
for( i = 0; i < 16; ++i )
{
/* find the dot product of this color, to place it on the line
(should be [-1,1]) */
int next_value = 0;
float dot_product =
color_line[0] * uncompressed[i*channels+0] +
color_line[1] * uncompressed[i*channels+1] +
color_line[2] * uncompressed[i*channels+2] -
dot_offset;
/* map to [0,3] */
next_value = (int)( dot_product * 3.0f + 0.5f );
if( next_value > 3 )
{
next_value = 3;
} else if( next_value < 0 )
{
next_value = 0;
}
/* OK, store this value */
compressed[next_bit >> 3] |= swizzle4[ next_value ] << (next_bit & 7);
next_bit += 2;
}
/* done compressing to DXT1 */
}
void
compress_DDS_alpha_block
(
const unsigned char *const uncompressed,
unsigned char compressed[8]
)
{
/* variables */
int i;
int next_bit;
int a0, a1;
float scale_me;
/* stupid order */
int swizzle8[] = { 1, 7, 6, 5, 4, 3, 2, 0 };
/* get the alpha limits (a0 > a1) */
a0 = a1 = uncompressed[3];
for( i = 4+3; i < 16*4; i += 4 )
{
if( uncompressed[i] > a0 )
{
a0 = uncompressed[i];
} else if( uncompressed[i] < a1 )
{
a1 = uncompressed[i];
}
}
/* store those limits, and zero the rest of the compressed dataset */
compressed[0] = a0;
compressed[1] = a1;
/* zero out the compressed data */
compressed[2] = 0;
compressed[3] = 0;
compressed[4] = 0;
compressed[5] = 0;
compressed[6] = 0;
compressed[7] = 0;
/* store the all of the alpha values */
next_bit = 8*2;
scale_me = 7.9999f / (a0 - a1);
for( i = 3; i < 16*4; i += 4 )
{
/* convert this alpha value to a 3 bit number */
int svalue;
int value = (int)((uncompressed[i] - a1) * scale_me);
svalue = swizzle8[ value&7 ];
/* OK, store this value, start with the 1st byte */
compressed[next_bit >> 3] |= svalue << (next_bit & 7);
if( (next_bit & 7) > 5 )
{
/* spans 2 bytes, fill in the start of the 2nd byte */
compressed[1 + (next_bit >> 3)] |= svalue >> (8 - (next_bit & 7) );
}
next_bit += 3;
}
/* done compressing to DXT1 */
}

123
cw 5/src/SOIL/image_DXT.h Normal file
View File

@ -0,0 +1,123 @@
/*
Jonathan Dummer
2007-07-31-10.32
simple DXT compression / decompression code
public domain
*/
#ifndef HEADER_IMAGE_DXT
#define HEADER_IMAGE_DXT
/**
Converts an image from an array of unsigned chars (RGB or RGBA) to
DXT1 or DXT5, then saves the converted image to disk.
\return 0 if failed, otherwise returns 1
**/
int
save_image_as_DDS
(
const char *filename,
int width, int height, int channels,
const unsigned char *const data
);
/**
take an image and convert it to DXT1 (no alpha)
**/
unsigned char*
convert_image_to_DXT1
(
const unsigned char *const uncompressed,
int width, int height, int channels,
int *out_size
);
/**
take an image and convert it to DXT5 (with alpha)
**/
unsigned char*
convert_image_to_DXT5
(
const unsigned char *const uncompressed,
int width, int height, int channels,
int *out_size
);
/** A bunch of DirectDraw Surface structures and flags **/
typedef struct
{
unsigned int dwMagic;
unsigned int dwSize;
unsigned int dwFlags;
unsigned int dwHeight;
unsigned int dwWidth;
unsigned int dwPitchOrLinearSize;
unsigned int dwDepth;
unsigned int dwMipMapCount;
unsigned int dwReserved1[ 11 ];
/* DDPIXELFORMAT */
struct
{
unsigned int dwSize;
unsigned int dwFlags;
unsigned int dwFourCC;
unsigned int dwRGBBitCount;
unsigned int dwRBitMask;
unsigned int dwGBitMask;
unsigned int dwBBitMask;
unsigned int dwAlphaBitMask;
}
sPixelFormat;
/* DDCAPS2 */
struct
{
unsigned int dwCaps1;
unsigned int dwCaps2;
unsigned int dwDDSX;
unsigned int dwReserved;
}
sCaps;
unsigned int dwReserved2;
}
DDS_header ;
/* the following constants were copied directly off the MSDN website */
/* The dwFlags member of the original DDSURFACEDESC2 structure
can be set to one or more of the following values. */
#define DDSD_CAPS 0x00000001
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PITCH 0x00000008
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
#define DDSD_LINEARSIZE 0x00080000
#define DDSD_DEPTH 0x00800000
/* DirectDraw Pixel Format */
#define DDPF_ALPHAPIXELS 0x00000001
#define DDPF_FOURCC 0x00000004
#define DDPF_RGB 0x00000040
/* The dwCaps1 member of the DDSCAPS2 structure can be
set to one or more of the following values. */
#define DDSCAPS_COMPLEX 0x00000008
#define DDSCAPS_TEXTURE 0x00001000
#define DDSCAPS_MIPMAP 0x00400000
/* The dwCaps2 member of the DDSCAPS2 structure can be
set to one or more of the following values. */
#define DDSCAPS2_CUBEMAP 0x00000200
#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
#define DDSCAPS2_VOLUME 0x00200000
#endif /* HEADER_IMAGE_DXT */

View File

@ -0,0 +1,435 @@
/*
Jonathan Dummer
image helper functions
MIT license
*/
#include "image_helper.h"
#include <stdlib.h>
#include <math.h>
/* Upscaling the image uses simple bilinear interpolation */
int
up_scale_image
(
const unsigned char* const orig,
int width, int height, int channels,
unsigned char* resampled,
int resampled_width, int resampled_height
)
{
float dx, dy;
int x, y, c;
/* error(s) check */
if ( (width < 1) || (height < 1) ||
(resampled_width < 2) || (resampled_height < 2) ||
(channels < 1) ||
(NULL == orig) || (NULL == resampled) )
{
/* signify badness */
return 0;
}
/*
for each given pixel in the new map, find the exact location
from the original map which would contribute to this guy
*/
dx = (width - 1.0f) / (resampled_width - 1.0f);
dy = (height - 1.0f) / (resampled_height - 1.0f);
for ( y = 0; y < resampled_height; ++y )
{
/* find the base y index and fractional offset from that */
float sampley = y * dy;
int inty = (int)sampley;
/* if( inty < 0 ) { inty = 0; } else */
if( inty > height - 2 ) { inty = height - 2; }
sampley -= inty;
for ( x = 0; x < resampled_width; ++x )
{
float samplex = x * dx;
int intx = (int)samplex;
int base_index;
/* find the base x index and fractional offset from that */
/* if( intx < 0 ) { intx = 0; } else */
if( intx > width - 2 ) { intx = width - 2; }
samplex -= intx;
/* base index into the original image */
base_index = (inty * width + intx) * channels;
for ( c = 0; c < channels; ++c )
{
/* do the sampling */
float value = 0.5f;
value += orig[base_index]
*(1.0f-samplex)*(1.0f-sampley);
value += orig[base_index+channels]
*(samplex)*(1.0f-sampley);
value += orig[base_index+width*channels]
*(1.0f-samplex)*(sampley);
value += orig[base_index+width*channels+channels]
*(samplex)*(sampley);
/* move to the next channel */
++base_index;
/* save the new value */
resampled[y*resampled_width*channels+x*channels+c] =
(unsigned char)(value);
}
}
}
/* done */
return 1;
}
int
mipmap_image
(
const unsigned char* const orig,
int width, int height, int channels,
unsigned char* resampled,
int block_size_x, int block_size_y
)
{
int mip_width, mip_height;
int i, j, c;
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 1) || (orig == NULL) ||
(resampled == NULL) ||
(block_size_x < 1) || (block_size_y < 1) )
{
/* nothing to do */
return 0;
}
mip_width = width / block_size_x;
mip_height = height / block_size_y;
if( mip_width < 1 )
{
mip_width = 1;
}
if( mip_height < 1 )
{
mip_height = 1;
}
for( j = 0; j < mip_height; ++j )
{
for( i = 0; i < mip_width; ++i )
{
for( c = 0; c < channels; ++c )
{
const int index = (j*block_size_y)*width*channels + (i*block_size_x)*channels + c;
int sum_value;
int u,v;
int u_block = block_size_x;
int v_block = block_size_y;
int block_area;
/* do a bit of checking so we don't over-run the boundaries
(necessary for non-square textures!) */
if( block_size_x * (i+1) > width )
{
u_block = width - i*block_size_y;
}
if( block_size_y * (j+1) > height )
{
v_block = height - j*block_size_y;
}
block_area = u_block*v_block;
/* for this pixel, see what the average
of all the values in the block are.
note: start the sum at the rounding value, not at 0 */
sum_value = block_area >> 1;
for( v = 0; v < v_block; ++v )
for( u = 0; u < u_block; ++u )
{
sum_value += orig[index + v*width*channels + u*channels];
}
resampled[j*mip_width*channels + i*channels + c] = sum_value / block_area;
}
}
}
return 1;
}
int
scale_image_RGB_to_NTSC_safe
(
unsigned char* orig,
int width, int height, int channels
)
{
const float scale_lo = 16.0f - 0.499f;
const float scale_hi = 235.0f + 0.499f;
int i, j;
int nc = channels;
unsigned char scale_LUT[256];
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 1) || (orig == NULL) )
{
/* nothing to do */
return 0;
}
/* set up the scaling Look Up Table */
for( i = 0; i < 256; ++i )
{
scale_LUT[i] = (unsigned char)((scale_hi - scale_lo) * i / 255.0f + scale_lo);
}
/* for channels = 2 or 4, ignore the alpha component */
nc -= 1 - (channels & 1);
/* OK, go through the image and scale any non-alpha components */
for( i = 0; i < width*height*channels; i += channels )
{
for( j = 0; j < nc; ++j )
{
orig[i+j] = scale_LUT[orig[i+j]];
}
}
return 1;
}
unsigned char clamp_byte( int x ) { return ( (x) < 0 ? (0) : ( (x) > 255 ? 255 : (x) ) ); }
/*
This function takes the RGB components of the image
and converts them into YCoCg. 3 components will be
re-ordered to CoYCg (for optimum DXT1 compression),
while 4 components will be ordered CoCgAY (for DXT5
compression).
*/
int
convert_RGB_to_YCoCg
(
unsigned char* orig,
int width, int height, int channels
)
{
int i;
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 3) || (channels > 4) ||
(orig == NULL) )
{
/* nothing to do */
return -1;
}
/* do the conversion */
if( channels == 3 )
{
for( i = 0; i < width*height*3; i += 3 )
{
int r = orig[i+0];
int g = (orig[i+1] + 1) >> 1;
int b = orig[i+2];
int tmp = (2 + r + b) >> 2;
/* Co */
orig[i+0] = clamp_byte( 128 + ((r - b + 1) >> 1) );
/* Y */
orig[i+1] = clamp_byte( g + tmp );
/* Cg */
orig[i+2] = clamp_byte( 128 + g - tmp );
}
} else
{
for( i = 0; i < width*height*4; i += 4 )
{
int r = orig[i+0];
int g = (orig[i+1] + 1) >> 1;
int b = orig[i+2];
unsigned char a = orig[i+3];
int tmp = (2 + r + b) >> 2;
/* Co */
orig[i+0] = clamp_byte( 128 + ((r - b + 1) >> 1) );
/* Cg */
orig[i+1] = clamp_byte( 128 + g - tmp );
/* Alpha */
orig[i+2] = a;
/* Y */
orig[i+3] = clamp_byte( g + tmp );
}
}
/* done */
return 0;
}
/*
This function takes the YCoCg components of the image
and converts them into RGB. See above.
*/
int
convert_YCoCg_to_RGB
(
unsigned char* orig,
int width, int height, int channels
)
{
int i;
/* error check */
if( (width < 1) || (height < 1) ||
(channels < 3) || (channels > 4) ||
(orig == NULL) )
{
/* nothing to do */
return -1;
}
/* do the conversion */
if( channels == 3 )
{
for( i = 0; i < width*height*3; i += 3 )
{
int co = orig[i+0] - 128;
int y = orig[i+1];
int cg = orig[i+2] - 128;
/* R */
orig[i+0] = clamp_byte( y + co - cg );
/* G */
orig[i+1] = clamp_byte( y + cg );
/* B */
orig[i+2] = clamp_byte( y - co - cg );
}
} else
{
for( i = 0; i < width*height*4; i += 4 )
{
int co = orig[i+0] - 128;
int cg = orig[i+1] - 128;
unsigned char a = orig[i+2];
int y = orig[i+3];
/* R */
orig[i+0] = clamp_byte( y + co - cg );
/* G */
orig[i+1] = clamp_byte( y + cg );
/* B */
orig[i+2] = clamp_byte( y - co - cg );
/* A */
orig[i+3] = a;
}
}
/* done */
return 0;
}
float
find_max_RGBE
(
unsigned char *image,
int width, int height
)
{
float max_val = 0.0f;
unsigned char *img = image;
int i, j;
for( i = width * height; i > 0; --i )
{
/* float scale = powf( 2.0f, img[3] - 128.0f ) / 255.0f; */
float scale = ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 );
for( j = 0; j < 3; ++j )
{
if( img[j] * scale > max_val )
{
max_val = img[j] * scale;
}
}
/* next pixel */
img += 4;
}
return max_val;
}
int
RGBE_to_RGBdivA
(
unsigned char *image,
int width, int height,
int rescale_to_max
)
{
/* local variables */
int i, iv;
unsigned char *img = image;
float scale = 1.0f;
/* error check */
if( (!image) || (width < 1) || (height < 1) )
{
return 0;
}
/* convert (note: no negative numbers, but 0.0 is possible) */
if( rescale_to_max )
{
scale = 255.0f / find_max_RGBE( image, width, height );
}
for( i = width * height; i > 0; --i )
{
/* decode this pixel, and find the max */
float r,g,b,e, m;
/* e = scale * powf( 2.0f, img[3] - 128.0f ) / 255.0f; */
e = scale * ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 );
r = e * img[0];
g = e * img[1];
b = e * img[2];
m = (r > g) ? r : g;
m = (b > m) ? b : m;
/* and encode it into RGBdivA */
iv = (m != 0.0f) ? (int)(255.0f / m) : 1.0f;
iv = (iv < 1) ? 1 : iv;
img[3] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * r + 0.5f);
img[0] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * g + 0.5f);
img[1] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * b + 0.5f);
img[2] = (iv > 255) ? 255 : iv;
/* and on to the next pixel */
img += 4;
}
return 1;
}
int
RGBE_to_RGBdivA2
(
unsigned char *image,
int width, int height,
int rescale_to_max
)
{
/* local variables */
int i, iv;
unsigned char *img = image;
float scale = 1.0f;
/* error check */
if( (!image) || (width < 1) || (height < 1) )
{
return 0;
}
/* convert (note: no negative numbers, but 0.0 is possible) */
if( rescale_to_max )
{
scale = 255.0f * 255.0f / find_max_RGBE( image, width, height );
}
for( i = width * height; i > 0; --i )
{
/* decode this pixel, and find the max */
float r,g,b,e, m;
/* e = scale * powf( 2.0f, img[3] - 128.0f ) / 255.0f; */
e = scale * ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 );
r = e * img[0];
g = e * img[1];
b = e * img[2];
m = (r > g) ? r : g;
m = (b > m) ? b : m;
/* and encode it into RGBdivA */
iv = (m != 0.0f) ? (int)sqrtf( 255.0f * 255.0f / m ) : 1.0f;
iv = (iv < 1) ? 1 : iv;
img[3] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * img[3] * r / 255.0f + 0.5f);
img[0] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * img[3] * g / 255.0f + 0.5f);
img[1] = (iv > 255) ? 255 : iv;
iv = (int)(img[3] * img[3] * b / 255.0f + 0.5f);
img[2] = (iv > 255) ? 255 : iv;
/* and on to the next pixel */
img += 4;
}
return 1;
}

View File

@ -0,0 +1,115 @@
/*
Jonathan Dummer
Image helper functions
MIT license
*/
#ifndef HEADER_IMAGE_HELPER
#define HEADER_IMAGE_HELPER
#ifdef __cplusplus
extern "C" {
#endif
/**
This function upscales an image.
Not to be used to create MIPmaps,
but to make it square,
or to make it a power-of-two sized.
**/
int
up_scale_image
(
const unsigned char* const orig,
int width, int height, int channels,
unsigned char* resampled,
int resampled_width, int resampled_height
);
/**
This function downscales an image.
Used for creating MIPmaps,
the incoming image should be a
power-of-two sized.
**/
int
mipmap_image
(
const unsigned char* const orig,
int width, int height, int channels,
unsigned char* resampled,
int block_size_x, int block_size_y
);
/**
This function takes the RGB components of the image
and scales each channel from [0,255] to [16,235].
This makes the colors "Safe" for display on NTSC
displays. Note that this is _NOT_ a good idea for
loading images like normal- or height-maps!
**/
int
scale_image_RGB_to_NTSC_safe
(
unsigned char* orig,
int width, int height, int channels
);
/**
This function takes the RGB components of the image
and converts them into YCoCg. 3 components will be
re-ordered to CoYCg (for optimum DXT1 compression),
while 4 components will be ordered CoCgAY (for DXT5
compression).
**/
int
convert_RGB_to_YCoCg
(
unsigned char* orig,
int width, int height, int channels
);
/**
This function takes the YCoCg components of the image
and converts them into RGB. See above.
**/
int
convert_YCoCg_to_RGB
(
unsigned char* orig,
int width, int height, int channels
);
/**
Converts an HDR image from an array
of unsigned chars (RGBE) to RGBdivA
\return 0 if failed, otherwise returns 1
**/
int
RGBE_to_RGBdivA
(
unsigned char *image,
int width, int height,
int rescale_to_max
);
/**
Converts an HDR image from an array
of unsigned chars (RGBE) to RGBdivA2
\return 0 if failed, otherwise returns 1
**/
int
RGBE_to_RGBdivA2
(
unsigned char *image,
int width, int height,
int rescale_to_max
);
#ifdef __cplusplus
}
#endif
#endif /* HEADER_IMAGE_HELPER */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,354 @@
/* stbi-1.16 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c
when you control the images you're loading
QUICK NOTES:
Primarily of interest to game developers and other people who can
avoid problematic images and only need the trivial interface
JPEG baseline (no JPEG progressive, no oddball channel decimations)
PNG non-interlaced
BMP non-1bpp, non-RLE
TGA (not sure what subset, if a subset)
PSD (composited view only, no extra channels)
HDR (radiance rgbE format)
writes BMP,TGA (define STBI_NO_WRITE to remove code)
decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code)
supports installable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD)
TODO:
stbi_info_*
history:
1.16 major bugfix - convert_format converted one too many pixels
1.15 initialize some fields for thread safety
1.14 fix threadsafe conversion bug; header-file-only version (#define STBI_HEADER_FILE_ONLY before including)
1.13 threadsafe
1.12 const qualifiers in the API
1.11 Support installable IDCT, colorspace conversion routines
1.10 Fixes for 64-bit (don't use "unsigned long")
optimized upsampling by Fabian "ryg" Giesen
1.09 Fix format-conversion for PSD code (bad global variables!)
1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz
1.07 attempt to fix C++ warning/errors again
1.06 attempt to fix C++ warning/errors again
1.05 fix TGA loading to return correct *comp and use good luminance calc
1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free
1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR
1.02 support for (subset of) HDR files, float interface for preferred access to them
1.01 fix bug: possible bug in handling right-side up bmps... not sure
fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all
1.00 interface to zlib that skips zlib header
0.99 correct handling of alpha in palette
0.98 TGA loader by lonesock; dynamically add loaders (untested)
0.97 jpeg errors on too large a file; also catch another malloc failure
0.96 fix detection of invalid v value - particleman@mollyrocket forum
0.95 during header scan, seek to markers in case of padding
0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same
0.93 handle jpegtran output; verbose errors
0.92 read 4,8,16,24,32-bit BMP files of several formats
0.91 output 24-bit Windows 3.0 BMP files
0.90 fix a few more warnings; bump version number to approach 1.0
0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd
0.60 fix compiling as c++
0.59 fix warnings: merge Dave Moore's -Wall fixes
0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian
0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less
than 16 available
0.56 fix bug: zlib uncompressed mode len vs. nlen
0.55 fix bug: restart_interval not initialized to 0
0.54 allow NULL for 'int *comp'
0.53 fix bug in png 3->4; speedup png decoding
0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments
0.51 obey req_comp requests, 1-component jpegs return as 1-component,
on 'test' only check type, not whether we support this variant
*/
#ifndef HEADER_STB_IMAGE_AUGMENTED
#define HEADER_STB_IMAGE_AUGMENTED
//// begin header file ////////////////////////////////////////////////////
//
// Limitations:
// - no progressive/interlaced support (jpeg, png)
// - 8-bit samples only (jpeg, png)
// - not threadsafe
// - channel subsampling of at most 2 in each dimension (jpeg)
// - no delayed line count (jpeg) -- IJG doesn't support either
//
// Basic usage (see HDR discussion below):
// int x,y,n;
// unsigned char *data = stbi_load(filename, &x, &y, &n, 0);
// // ... process data if not NULL ...
// // ... x = width, y = height, n = # 8-bit components per pixel ...
// // ... replace '0' with '1'..'4' to force that many components per pixel
// stbi_image_free(data)
//
// Standard parameters:
// int *x -- outputs image width in pixels
// int *y -- outputs image height in pixels
// int *comp -- outputs # of image components in image file
// int req_comp -- if non-zero, # of image components requested in result
//
// The return value from an image loader is an 'unsigned char *' which points
// to the pixel data. The pixel data consists of *y scanlines of *x pixels,
// with each pixel consisting of N interleaved 8-bit components; the first
// pixel pointed to is top-left-most in the image. There is no padding between
// image scanlines or between pixels, regardless of format. The number of
// components N is 'req_comp' if req_comp is non-zero, or *comp otherwise.
// If req_comp is non-zero, *comp has the number of components that _would_
// have been output otherwise. E.g. if you set req_comp to 4, you will always
// get RGBA output, but you can check *comp to easily see if it's opaque.
//
// An output image with N components has the following components interleaved
// in this order in each pixel:
//
// N=#comp components
// 1 grey
// 2 grey, alpha
// 3 red, green, blue
// 4 red, green, blue, alpha
//
// If image loading fails for any reason, the return value will be NULL,
// and *x, *y, *comp will be unchanged. The function stbi_failure_reason()
// can be queried for an extremely brief, end-user unfriendly explanation
// of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid
// compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
// more user-friendly ones.
//
// Paletted PNG and BMP images are automatically depalettized.
//
//
// ===========================================================================
//
// HDR image support (disable by defining STBI_NO_HDR)
//
// stb_image now supports loading HDR images in general, and currently
// the Radiance .HDR file format, although the support is provided
// generically. You can still load any file through the existing interface;
// if you attempt to load an HDR file, it will be automatically remapped to
// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
// both of these constants can be reconfigured through this interface:
//
// stbi_hdr_to_ldr_gamma(2.2f);
// stbi_hdr_to_ldr_scale(1.0f);
//
// (note, do not use _inverse_ constants; stbi_image will invert them
// appropriately).
//
// Additionally, there is a new, parallel interface for loading files as
// (linear) floats to preserve the full dynamic range:
//
// float *data = stbi_loadf(filename, &x, &y, &n, 0);
//
// If you load LDR images through this interface, those images will
// be promoted to floating point values, run through the inverse of
// constants corresponding to the above:
//
// stbi_ldr_to_hdr_scale(1.0f);
// stbi_ldr_to_hdr_gamma(2.2f);
//
// Finally, given a filename (or an open file or memory block--see header
// file for details) containing image data, you can query for the "most
// appropriate" interface to use (that is, whether the image is HDR or
// not), using:
//
// stbi_is_hdr(char *filename);
#ifndef STBI_NO_STDIO
#include <stdio.h>
#endif
#define STBI_VERSION 1
enum
{
STBI_default = 0, // only used for req_comp
STBI_grey = 1,
STBI_grey_alpha = 2,
STBI_rgb = 3,
STBI_rgb_alpha = 4,
};
typedef unsigned char stbi_uc;
#ifdef __cplusplus
extern "C" {
#endif
// WRITING API
#if !defined(STBI_NO_WRITE) && !defined(STBI_NO_STDIO)
// write a BMP/TGA file given tightly packed 'comp' channels (no padding, nor bmp-stride-padding)
// (you must include the appropriate extension in the filename).
// returns TRUE on success, FALSE if couldn't open file, error writing file
extern int stbi_write_bmp (char const *filename, int x, int y, int comp, void *data);
extern int stbi_write_tga (char const *filename, int x, int y, int comp, void *data);
#endif
// PRIMARY API - works on images of any type
// load image by filename, open file, or memory buffer
#ifndef STBI_NO_STDIO
extern stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp);
extern stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp);
#endif
extern stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
// for stbi_load_from_file, file pointer is left pointing immediately after image
#ifndef STBI_NO_HDR
#ifndef STBI_NO_STDIO
extern float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp);
extern float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
extern float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
extern void stbi_hdr_to_ldr_gamma(float gamma);
extern void stbi_hdr_to_ldr_scale(float scale);
extern void stbi_ldr_to_hdr_gamma(float gamma);
extern void stbi_ldr_to_hdr_scale(float scale);
#endif // STBI_NO_HDR
// get a VERY brief reason for failure
// NOT THREADSAFE
extern char *stbi_failure_reason (void);
// free the loaded image -- this is just free()
extern void stbi_image_free (void *retval_from_stbi_load);
// get image dimensions & components without fully decoding
extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
extern int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len);
#ifndef STBI_NO_STDIO
extern int stbi_info (char const *filename, int *x, int *y, int *comp);
extern int stbi_is_hdr (char const *filename);
extern int stbi_is_hdr_from_file(FILE *f);
#endif
// ZLIB client - used by PNG, available for other purposes
extern char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen);
extern char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen);
extern int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
extern char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen);
extern int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
// TYPE-SPECIFIC ACCESS
// is it a jpeg?
extern int stbi_jpeg_test_memory (stbi_uc const *buffer, int len);
extern stbi_uc *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
#ifndef STBI_NO_STDIO
extern stbi_uc *stbi_jpeg_load (char const *filename, int *x, int *y, int *comp, int req_comp);
extern int stbi_jpeg_test_file (FILE *f);
extern stbi_uc *stbi_jpeg_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp);
extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp);
#endif
// is it a png?
extern int stbi_png_test_memory (stbi_uc const *buffer, int len);
extern stbi_uc *stbi_png_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp);
#ifndef STBI_NO_STDIO
extern stbi_uc *stbi_png_load (char const *filename, int *x, int *y, int *comp, int req_comp);
extern int stbi_png_info (char const *filename, int *x, int *y, int *comp);
extern int stbi_png_test_file (FILE *f);
extern stbi_uc *stbi_png_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp);
#endif
// is it a bmp?
extern int stbi_bmp_test_memory (stbi_uc const *buffer, int len);
extern stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp);
extern stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
extern int stbi_bmp_test_file (FILE *f);
extern stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
// is it a tga?
extern int stbi_tga_test_memory (stbi_uc const *buffer, int len);
extern stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp);
extern stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
extern int stbi_tga_test_file (FILE *f);
extern stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
// is it a psd?
extern int stbi_psd_test_memory (stbi_uc const *buffer, int len);
extern stbi_uc *stbi_psd_load (char const *filename, int *x, int *y, int *comp, int req_comp);
extern stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
extern int stbi_psd_test_file (FILE *f);
extern stbi_uc *stbi_psd_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
// is it an hdr?
extern int stbi_hdr_test_memory (stbi_uc const *buffer, int len);
extern float * stbi_hdr_load (char const *filename, int *x, int *y, int *comp, int req_comp);
extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
extern stbi_uc *stbi_hdr_load_rgbe (char const *filename, int *x, int *y, int *comp, int req_comp);
extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
extern int stbi_hdr_test_file (FILE *f);
extern float * stbi_hdr_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
extern stbi_uc *stbi_hdr_load_rgbe_file (FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
// define new loaders
typedef struct
{
int (*test_memory)(stbi_uc const *buffer, int len);
stbi_uc * (*load_from_memory)(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
int (*test_file)(FILE *f);
stbi_uc * (*load_from_file)(FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
} stbi_loader;
// register a loader by filling out the above structure (you must defined ALL functions)
// returns 1 if added or already added, 0 if not added (too many loaders)
// NOT THREADSAFE
extern int stbi_register_loader(stbi_loader *loader);
// define faster low-level operations (typically SIMD support)
#if STBI_SIMD
typedef void (*stbi_idct_8x8)(uint8 *out, int out_stride, short data[64], unsigned short *dequantize);
// compute an integer IDCT on "input"
// input[x] = data[x] * dequantize[x]
// write results to 'out': 64 samples, each run of 8 spaced by 'out_stride'
// CLAMP results to 0..255
typedef void (*stbi_YCbCr_to_RGB_run)(uint8 *output, uint8 const *y, uint8 const *cb, uint8 const *cr, int count, int step);
// compute a conversion from YCbCr to RGB
// 'count' pixels
// write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B
// y: Y input channel
// cb: Cb input channel; scale/biased to be 0..255
// cr: Cr input channel; scale/biased to be 0..255
extern void stbi_install_idct(stbi_idct_8x8 func);
extern void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func);
#endif // STBI_SIMD
#ifdef __cplusplus
}
#endif
//
//
//// end header file /////////////////////////////////////////////////////
#endif // STBI_INCLUDE_STB_IMAGE_H

View File

@ -0,0 +1,21 @@
/*
adding DDS loading support to stbi
*/
#ifndef HEADER_STB_IMAGE_DDS_AUGMENTATION
#define HEADER_STB_IMAGE_DDS_AUGMENTATION
// is it a DDS file?
extern int stbi_dds_test_memory (stbi_uc const *buffer, int len);
extern stbi_uc *stbi_dds_load (char *filename, int *x, int *y, int *comp, int req_comp);
extern stbi_uc *stbi_dds_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
extern int stbi_dds_test_file (FILE *f);
extern stbi_uc *stbi_dds_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
//
//
//// end header file /////////////////////////////////////////////////////
#endif // HEADER_STB_IMAGE_DDS_AUGMENTATION

View File

@ -0,0 +1,511 @@
/// DDS file support, does decoding, _not_ direct uploading
/// (use SOIL for that ;-)
/// A bunch of DirectDraw Surface structures and flags
typedef struct {
unsigned int dwMagic;
unsigned int dwSize;
unsigned int dwFlags;
unsigned int dwHeight;
unsigned int dwWidth;
unsigned int dwPitchOrLinearSize;
unsigned int dwDepth;
unsigned int dwMipMapCount;
unsigned int dwReserved1[ 11 ];
// DDPIXELFORMAT
struct {
unsigned int dwSize;
unsigned int dwFlags;
unsigned int dwFourCC;
unsigned int dwRGBBitCount;
unsigned int dwRBitMask;
unsigned int dwGBitMask;
unsigned int dwBBitMask;
unsigned int dwAlphaBitMask;
} sPixelFormat;
// DDCAPS2
struct {
unsigned int dwCaps1;
unsigned int dwCaps2;
unsigned int dwDDSX;
unsigned int dwReserved;
} sCaps;
unsigned int dwReserved2;
} DDS_header ;
// the following constants were copied directly off the MSDN website
// The dwFlags member of the original DDSURFACEDESC2 structure
// can be set to one or more of the following values.
#define DDSD_CAPS 0x00000001
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PITCH 0x00000008
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
#define DDSD_LINEARSIZE 0x00080000
#define DDSD_DEPTH 0x00800000
// DirectDraw Pixel Format
#define DDPF_ALPHAPIXELS 0x00000001
#define DDPF_FOURCC 0x00000004
#define DDPF_RGB 0x00000040
// The dwCaps1 member of the DDSCAPS2 structure can be
// set to one or more of the following values.
#define DDSCAPS_COMPLEX 0x00000008
#define DDSCAPS_TEXTURE 0x00001000
#define DDSCAPS_MIPMAP 0x00400000
// The dwCaps2 member of the DDSCAPS2 structure can be
// set to one or more of the following values.
#define DDSCAPS2_CUBEMAP 0x00000200
#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
#define DDSCAPS2_VOLUME 0x00200000
static int dds_test(stbi *s)
{
// check the magic number
if (get8(s) != 'D') return 0;
if (get8(s) != 'D') return 0;
if (get8(s) != 'S') return 0;
if (get8(s) != ' ') return 0;
// check header size
if (get32le(s) != 124) return 0;
return 1;
}
#ifndef STBI_NO_STDIO
int stbi_dds_test_file (FILE *f)
{
stbi s;
int r,n = ftell(f);
start_file(&s,f);
r = dds_test(&s);
fseek(f,n,SEEK_SET);
return r;
}
#endif
int stbi_dds_test_memory (stbi_uc const *buffer, int len)
{
stbi s;
start_mem(&s,buffer, len);
return dds_test(&s);
}
// helper functions
int stbi_convert_bit_range( int c, int from_bits, int to_bits )
{
int b = (1 << (from_bits - 1)) + c * ((1 << to_bits) - 1);
return (b + (b >> from_bits)) >> from_bits;
}
void stbi_rgb_888_from_565( unsigned int c, int *r, int *g, int *b )
{
*r = stbi_convert_bit_range( (c >> 11) & 31, 5, 8 );
*g = stbi_convert_bit_range( (c >> 05) & 63, 6, 8 );
*b = stbi_convert_bit_range( (c >> 00) & 31, 5, 8 );
}
void stbi_decode_DXT1_block(
unsigned char uncompressed[16*4],
unsigned char compressed[8] )
{
int next_bit = 4*8;
int i, r, g, b;
int c0, c1;
unsigned char decode_colors[4*4];
// find the 2 primary colors
c0 = compressed[0] + (compressed[1] << 8);
c1 = compressed[2] + (compressed[3] << 8);
stbi_rgb_888_from_565( c0, &r, &g, &b );
decode_colors[0] = r;
decode_colors[1] = g;
decode_colors[2] = b;
decode_colors[3] = 255;
stbi_rgb_888_from_565( c1, &r, &g, &b );
decode_colors[4] = r;
decode_colors[5] = g;
decode_colors[6] = b;
decode_colors[7] = 255;
if( c0 > c1 )
{
// no alpha, 2 interpolated colors
decode_colors[8] = (2*decode_colors[0] + decode_colors[4]) / 3;
decode_colors[9] = (2*decode_colors[1] + decode_colors[5]) / 3;
decode_colors[10] = (2*decode_colors[2] + decode_colors[6]) / 3;
decode_colors[11] = 255;
decode_colors[12] = (decode_colors[0] + 2*decode_colors[4]) / 3;
decode_colors[13] = (decode_colors[1] + 2*decode_colors[5]) / 3;
decode_colors[14] = (decode_colors[2] + 2*decode_colors[6]) / 3;
decode_colors[15] = 255;
} else
{
// 1 interpolated color, alpha
decode_colors[8] = (decode_colors[0] + decode_colors[4]) / 2;
decode_colors[9] = (decode_colors[1] + decode_colors[5]) / 2;
decode_colors[10] = (decode_colors[2] + decode_colors[6]) / 2;
decode_colors[11] = 255;
decode_colors[12] = 0;
decode_colors[13] = 0;
decode_colors[14] = 0;
decode_colors[15] = 0;
}
// decode the block
for( i = 0; i < 16*4; i += 4 )
{
int idx = ((compressed[next_bit>>3] >> (next_bit & 7)) & 3) * 4;
next_bit += 2;
uncompressed[i+0] = decode_colors[idx+0];
uncompressed[i+1] = decode_colors[idx+1];
uncompressed[i+2] = decode_colors[idx+2];
uncompressed[i+3] = decode_colors[idx+3];
}
// done
}
void stbi_decode_DXT23_alpha_block(
unsigned char uncompressed[16*4],
unsigned char compressed[8] )
{
int i, next_bit = 0;
// each alpha value gets 4 bits
for( i = 3; i < 16*4; i += 4 )
{
uncompressed[i] = stbi_convert_bit_range(
(compressed[next_bit>>3] >> (next_bit&7)) & 15,
4, 8 );
next_bit += 4;
}
}
void stbi_decode_DXT45_alpha_block(
unsigned char uncompressed[16*4],
unsigned char compressed[8] )
{
int i, next_bit = 8*2;
unsigned char decode_alpha[8];
// each alpha value gets 3 bits, and the 1st 2 bytes are the range
decode_alpha[0] = compressed[0];
decode_alpha[1] = compressed[1];
if( decode_alpha[0] > decode_alpha[1] )
{
// 6 step intermediate
decode_alpha[2] = (6*decode_alpha[0] + 1*decode_alpha[1]) / 7;
decode_alpha[3] = (5*decode_alpha[0] + 2*decode_alpha[1]) / 7;
decode_alpha[4] = (4*decode_alpha[0] + 3*decode_alpha[1]) / 7;
decode_alpha[5] = (3*decode_alpha[0] + 4*decode_alpha[1]) / 7;
decode_alpha[6] = (2*decode_alpha[0] + 5*decode_alpha[1]) / 7;
decode_alpha[7] = (1*decode_alpha[0] + 6*decode_alpha[1]) / 7;
} else
{
// 4 step intermediate, pluss full and none
decode_alpha[2] = (4*decode_alpha[0] + 1*decode_alpha[1]) / 5;
decode_alpha[3] = (3*decode_alpha[0] + 2*decode_alpha[1]) / 5;
decode_alpha[4] = (2*decode_alpha[0] + 3*decode_alpha[1]) / 5;
decode_alpha[5] = (1*decode_alpha[0] + 4*decode_alpha[1]) / 5;
decode_alpha[6] = 0;
decode_alpha[7] = 255;
}
for( i = 3; i < 16*4; i += 4 )
{
int idx = 0, bit;
bit = (compressed[next_bit>>3] >> (next_bit&7)) & 1;
idx += bit << 0;
++next_bit;
bit = (compressed[next_bit>>3] >> (next_bit&7)) & 1;
idx += bit << 1;
++next_bit;
bit = (compressed[next_bit>>3] >> (next_bit&7)) & 1;
idx += bit << 2;
++next_bit;
uncompressed[i] = decode_alpha[idx & 7];
}
// done
}
void stbi_decode_DXT_color_block(
unsigned char uncompressed[16*4],
unsigned char compressed[8] )
{
int next_bit = 4*8;
int i, r, g, b;
int c0, c1;
unsigned char decode_colors[4*3];
// find the 2 primary colors
c0 = compressed[0] + (compressed[1] << 8);
c1 = compressed[2] + (compressed[3] << 8);
stbi_rgb_888_from_565( c0, &r, &g, &b );
decode_colors[0] = r;
decode_colors[1] = g;
decode_colors[2] = b;
stbi_rgb_888_from_565( c1, &r, &g, &b );
decode_colors[3] = r;
decode_colors[4] = g;
decode_colors[5] = b;
// Like DXT1, but no choicees:
// no alpha, 2 interpolated colors
decode_colors[6] = (2*decode_colors[0] + decode_colors[3]) / 3;
decode_colors[7] = (2*decode_colors[1] + decode_colors[4]) / 3;
decode_colors[8] = (2*decode_colors[2] + decode_colors[5]) / 3;
decode_colors[9] = (decode_colors[0] + 2*decode_colors[3]) / 3;
decode_colors[10] = (decode_colors[1] + 2*decode_colors[4]) / 3;
decode_colors[11] = (decode_colors[2] + 2*decode_colors[5]) / 3;
// decode the block
for( i = 0; i < 16*4; i += 4 )
{
int idx = ((compressed[next_bit>>3] >> (next_bit & 7)) & 3) * 3;
next_bit += 2;
uncompressed[i+0] = decode_colors[idx+0];
uncompressed[i+1] = decode_colors[idx+1];
uncompressed[i+2] = decode_colors[idx+2];
}
// done
}
static stbi_uc *dds_load(stbi *s, int *x, int *y, int *comp, int req_comp)
{
// all variables go up front
stbi_uc *dds_data = NULL;
stbi_uc block[16*4];
stbi_uc compressed[8];
int flags, DXT_family;
int has_alpha, has_mipmap;
int is_compressed, cubemap_faces;
int block_pitch, num_blocks;
DDS_header header;
int i, sz, cf;
// load the header
if( sizeof( DDS_header ) != 128 )
{
return NULL;
}
getn( s, (stbi_uc*)(&header), 128 );
// and do some checking
if( header.dwMagic != (('D' << 0) | ('D' << 8) | ('S' << 16) | (' ' << 24)) ) return NULL;
if( header.dwSize != 124 ) return NULL;
flags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT;
if( (header.dwFlags & flags) != flags ) return NULL;
/* According to the MSDN spec, the dwFlags should contain
DDSD_LINEARSIZE if it's compressed, or DDSD_PITCH if
uncompressed. Some DDS writers do not conform to the
spec, so I need to make my reader more tolerant */
if( header.sPixelFormat.dwSize != 32 ) return NULL;
flags = DDPF_FOURCC | DDPF_RGB;
if( (header.sPixelFormat.dwFlags & flags) == 0 ) return NULL;
if( (header.sCaps.dwCaps1 & DDSCAPS_TEXTURE) == 0 ) return NULL;
// get the image data
s->img_x = header.dwWidth;
s->img_y = header.dwHeight;
s->img_n = 4;
is_compressed = (header.sPixelFormat.dwFlags & DDPF_FOURCC) / DDPF_FOURCC;
has_alpha = (header.sPixelFormat.dwFlags & DDPF_ALPHAPIXELS) / DDPF_ALPHAPIXELS;
has_mipmap = (header.sCaps.dwCaps1 & DDSCAPS_MIPMAP) && (header.dwMipMapCount > 1);
cubemap_faces = (header.sCaps.dwCaps2 & DDSCAPS2_CUBEMAP) / DDSCAPS2_CUBEMAP;
/* I need cubemaps to have square faces */
cubemap_faces &= (s->img_x == s->img_y);
cubemap_faces *= 5;
cubemap_faces += 1;
block_pitch = (s->img_x+3) >> 2;
num_blocks = block_pitch * ((s->img_y+3) >> 2);
/* let the user know what's going on */
*x = s->img_x;
*y = s->img_y;
*comp = s->img_n;
/* is this uncompressed? */
if( is_compressed )
{
/* compressed */
// note: header.sPixelFormat.dwFourCC is something like (('D'<<0)|('X'<<8)|('T'<<16)|('1'<<24))
DXT_family = 1 + (header.sPixelFormat.dwFourCC >> 24) - '1';
if( (DXT_family < 1) || (DXT_family > 5) ) return NULL;
/* check the expected size...oops, nevermind...
those non-compliant writers leave
dwPitchOrLinearSize == 0 */
// passed all the tests, get the RAM for decoding
sz = (s->img_x)*(s->img_y)*4*cubemap_faces;
dds_data = (unsigned char*)malloc( sz );
/* do this once for each face */
for( cf = 0; cf < cubemap_faces; ++ cf )
{
// now read and decode all the blocks
for( i = 0; i < num_blocks; ++i )
{
// where are we?
int bx, by, bw=4, bh=4;
int ref_x = 4 * (i % block_pitch);
int ref_y = 4 * (i / block_pitch);
// get the next block's worth of compressed data, and decompress it
if( DXT_family == 1 )
{
// DXT1
getn( s, compressed, 8 );
stbi_decode_DXT1_block( block, compressed );
} else if( DXT_family < 4 )
{
// DXT2/3
getn( s, compressed, 8 );
stbi_decode_DXT23_alpha_block ( block, compressed );
getn( s, compressed, 8 );
stbi_decode_DXT_color_block ( block, compressed );
} else
{
// DXT4/5
getn( s, compressed, 8 );
stbi_decode_DXT45_alpha_block ( block, compressed );
getn( s, compressed, 8 );
stbi_decode_DXT_color_block ( block, compressed );
}
// is this a partial block?
if( ref_x + 4 > s->img_x )
{
bw = s->img_x - ref_x;
}
if( ref_y + 4 > s->img_y )
{
bh = s->img_y - ref_y;
}
// now drop our decompressed data into the buffer
for( by = 0; by < bh; ++by )
{
int idx = 4*((ref_y+by+cf*s->img_x)*s->img_x + ref_x);
for( bx = 0; bx < bw*4; ++bx )
{
dds_data[idx+bx] = block[by*16+bx];
}
}
}
/* done reading and decoding the main image...
skip MIPmaps if present */
if( has_mipmap )
{
int block_size = 16;
if( DXT_family == 1 )
{
block_size = 8;
}
for( i = 1; i < header.dwMipMapCount; ++i )
{
int mx = s->img_x >> (i + 2);
int my = s->img_y >> (i + 2);
if( mx < 1 )
{
mx = 1;
}
if( my < 1 )
{
my = 1;
}
skip( s, mx*my*block_size );
}
}
}/* per cubemap face */
} else
{
/* uncompressed */
DXT_family = 0;
s->img_n = 3;
if( has_alpha )
{
s->img_n = 4;
}
*comp = s->img_n;
sz = s->img_x*s->img_y*s->img_n*cubemap_faces;
dds_data = (unsigned char*)malloc( sz );
/* do this once for each face */
for( cf = 0; cf < cubemap_faces; ++ cf )
{
/* read the main image for this face */
getn( s, &dds_data[cf*s->img_x*s->img_y*s->img_n], s->img_x*s->img_y*s->img_n );
/* done reading and decoding the main image...
skip MIPmaps if present */
if( has_mipmap )
{
for( i = 1; i < header.dwMipMapCount; ++i )
{
int mx = s->img_x >> i;
int my = s->img_y >> i;
if( mx < 1 )
{
mx = 1;
}
if( my < 1 )
{
my = 1;
}
skip( s, mx*my*s->img_n );
}
}
}
/* data was BGR, I need it RGB */
for( i = 0; i < sz; i += s->img_n )
{
unsigned char temp = dds_data[i];
dds_data[i] = dds_data[i+2];
dds_data[i+2] = temp;
}
}
/* finished decompressing into RGBA,
adjust the y size if we have a cubemap
note: sz is already up to date */
s->img_y *= cubemap_faces;
*y = s->img_y;
// did the user want something else, or
// see if all the alpha values are 255 (i.e. no transparency)
has_alpha = 0;
if( s->img_n == 4)
{
for( i = 3; (i < sz) && (has_alpha == 0); i += 4 )
{
has_alpha |= (dds_data[i] < 255);
}
}
if( (req_comp <= 4) && (req_comp >= 1) )
{
// user has some requirements, meet them
if( req_comp != s->img_n )
{
dds_data = convert_format( dds_data, s->img_n, req_comp, s->img_x, s->img_y );
*comp = s->img_n;
}
} else
{
// user had no requirements, only drop to RGB is no alpha
if( (has_alpha == 0) && (s->img_n == 4) )
{
dds_data = convert_format( dds_data, 4, 3, s->img_x, s->img_y );
*comp = 3;
}
}
// OK, done
return dds_data;
}
#ifndef STBI_NO_STDIO
stbi_uc *stbi_dds_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp)
{
stbi s;
start_file(&s,f);
return dds_load(&s,x,y,comp,req_comp);
}
stbi_uc *stbi_dds_load (char *filename, int *x, int *y, int *comp, int req_comp)
{
stbi_uc *data;
FILE *f = fopen(filename, "rb");
if (!f) return NULL;
data = stbi_dds_load_from_file(f,x,y,comp,req_comp);
fclose(f);
return data;
}
#endif
stbi_uc *stbi_dds_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
{
stbi s;
start_mem(&s,buffer, len);
return dds_load(&s,x,y,comp,req_comp);
}

102
cw 5/src/Shader_Loader.cpp Normal file
View File

@ -0,0 +1,102 @@
#include "Shader_Loader.h"
#include<iostream>
#include<fstream>
#include<vector>
using namespace Core;
Shader_Loader::Shader_Loader(void){}
Shader_Loader::~Shader_Loader(void){}
std::string Shader_Loader::ReadShader(char *filename)
{
std::string shaderCode;
std::ifstream file(filename, std::ios::in);
if (!file.good())
{
std::cout << "Can't read file " << filename << std::endl;
std::terminate();
}
file.seekg(0, std::ios::end);
shaderCode.resize((unsigned int)file.tellg());
file.seekg(0, std::ios::beg);
file.read(&shaderCode[0], shaderCode.size());
file.close();
return shaderCode;
}
GLuint Shader_Loader::CreateShader(GLenum shaderType, std::string
source, char* shaderName)
{
int compile_result = 0;
GLuint shader = glCreateShader(shaderType);
const char *shader_code_ptr = source.c_str();
const int shader_code_size = source.size();
glShaderSource(shader, 1, &shader_code_ptr, &shader_code_size);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &compile_result);
//sprawdz bledy
if (compile_result == GL_FALSE)
{
int info_log_length = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> shader_log(info_log_length);
glGetShaderInfoLog(shader, info_log_length, NULL, &shader_log[0]);
std::cout << "ERROR compiling shader: " << shaderName << std::endl << &shader_log[0] << std::endl;
return 0;
}
return shader;
}
GLuint Shader_Loader::CreateProgram(char* vertexShaderFilename,
char* fragmentShaderFilename)
{
//wczytaj shadery
std::string vertex_shader_code = ReadShader(vertexShaderFilename);
std::string fragment_shader_code = ReadShader(fragmentShaderFilename);
GLuint vertex_shader = CreateShader(GL_VERTEX_SHADER, vertex_shader_code, "vertex shader");
GLuint fragment_shader = CreateShader(GL_FRAGMENT_SHADER, fragment_shader_code, "fragment shader");
int link_result = 0;
//stworz shader
GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &link_result);
//sprawdz bledy w linkerze
if (link_result == GL_FALSE)
{
int info_log_length = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &info_log_length);
std::vector<char> program_log(info_log_length);
glGetProgramInfoLog(program, info_log_length, NULL, &program_log[0]);
std::cout << "Shader Loader : LINK ERROR" << std::endl << &program_log[0] << std::endl;
return 0;
}
glDetachShader(program, vertex_shader);
glDetachShader(program, fragment_shader);
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
return program;
}
void Shader_Loader::DeleteProgram( GLuint program )
{
glDeleteProgram(program);
}

29
cw 5/src/Shader_Loader.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include "glew.h"
#include "freeglut.h"
#include <iostream>
namespace Core
{
class Shader_Loader
{
private:
std::string ReadShader(char *filename);
GLuint CreateShader(GLenum shaderType,
std::string source,
char* shaderName);
public:
Shader_Loader(void);
~Shader_Loader(void);
GLuint CreateProgram(char* VertexShaderFilename,
char* FragmentShaderFilename);
void DeleteProgram(GLuint program);
};
}

230
cw 5/src/ex_5_1.hpp Normal file
View File

@ -0,0 +1,230 @@
#include "glew.h"
#include <GLFW/glfw3.h>
#include "glm.hpp"
#include "ext.hpp"
#include <iostream>
#include <cmath>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "Camera.h"
#include "Box.cpp"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <string>
GLuint program;
Core::Shader_Loader shaderLoader;
Core::RenderContext shipContext;
Core::RenderContext sphereContext;
glm::vec3 cameraPos = glm::vec3(-4.f, 0, 0);
glm::vec3 cameraDir = glm::vec3(1.f, 0.f, 0.f);
glm::vec3 lightDir = glm::normalize(glm::vec3(1.f, 1.f, 1.f));
glm::vec3 lightColor = glm::vec3(1.f, 1.f, 1.f);
glm::vec3 spaceshipPos = glm::vec3(-4.f, 0, 0);
glm::vec3 spaceshipDir = glm::vec3(1.f, 0.f, 0.f);
GLuint VAO,VBO;
float aspectRatio = 1.f;
float lastTime = -1.f;
float deltaTime = 0.f;
void updateDeltaTime(float time) {
if (lastTime < 0) {
lastTime = time;
return;
}
deltaTime = time - lastTime;
if (deltaTime > 0.1) deltaTime = 0.1;
lastTime = time;
}
glm::mat4 createCameraMatrix()
{
glm::vec3 cameraSide = glm::normalize(glm::cross(cameraDir,glm::vec3(0.f,1.f,0.f)));
glm::vec3 cameraUp = glm::normalize(glm::cross(cameraSide,cameraDir));
glm::mat4 cameraRotrationMatrix = glm::mat4({
cameraSide.x,cameraSide.y,cameraSide.z,0,
cameraUp.x,cameraUp.y,cameraUp.z ,0,
-cameraDir.x,-cameraDir.y,-cameraDir.z,0,
0.,0.,0.,1.,
});
cameraRotrationMatrix = glm::transpose(cameraRotrationMatrix);
glm::mat4 cameraMatrix = cameraRotrationMatrix * glm::translate(-cameraPos);
return cameraMatrix;
}
glm::mat4 createPerspectiveMatrix()
{
glm::mat4 perspectiveMatrix;
float n = 0.05;
float f = 20.;
float a1 = glm::min(aspectRatio, 1.f);
float a2 = glm::min(1 / aspectRatio, 1.f);
perspectiveMatrix = glm::mat4({
1,0.,0.,0.,
0.,aspectRatio,0.,0.,
0.,0.,(f+n) / (n - f),2*f * n / (n - f),
0.,0.,-1.,0.,
});
perspectiveMatrix=glm::transpose(perspectiveMatrix);
return perspectiveMatrix;
}
void drawObjectColor(Core::RenderContext& context, glm::mat4 modelMatrix, glm::vec3 color) {
glUseProgram(program);
glm::mat4 viewProjectionMatrix = createPerspectiveMatrix() * createCameraMatrix();
glm::mat4 transformation = viewProjectionMatrix * modelMatrix;
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, (float*)&transformation);
glUniformMatrix4fv(glGetUniformLocation(program, "modelMat"), 1, GL_FALSE, (float*)&modelMatrix);
glUniform3f(glGetUniformLocation(program, "color"), color.x,color.y,color.z);
glUniform3f(glGetUniformLocation(program, "lightDir"), lightDir.x, lightDir.y, lightDir.z);
glUniform3f(glGetUniformLocation(program, "lightColor"), lightColor.x, lightColor.y, lightColor.z);
glUniform3f(glGetUniformLocation(program, "cameraPos"), cameraPos.x, cameraPos.y, cameraPos.z);
//TEST
glUniform1f(glGetUniformLocation(program, "time"), lastTime);
Core::DrawContext(context);
glUseProgram(0);
}
void renderScene(GLFWwindow* window)
{
glClearColor(0.0f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 transformation;
float time = glfwGetTime();
updateDeltaTime(time);
drawObjectColor(sphereContext,glm::mat4(),glm::vec3(1.0, 1.0, 0.3));
drawObjectColor(sphereContext, glm::eulerAngleY(time / 3) * glm::translate(glm::vec3(4.f, 0, 0)) * glm::scale(glm::vec3(0.3f)), glm::vec3(0.2, 0.7, 0.3));
drawObjectColor(sphereContext,
glm::eulerAngleY(time / 3) * glm::translate(glm::vec3(4.f, 0, 0)) * glm::eulerAngleY(time) * glm::translate(glm::vec3(1.f, 0, 0)) * glm::scale(glm::vec3(0.1f)),
glm::vec3(0.5, 0.5, 0.5));
glm::vec3 spaceshipSide = glm::normalize(glm::cross(spaceshipDir, glm::vec3(0.f, 1.f, 0.f)));
glm::vec3 spaceshipUp = glm::normalize(glm::cross(spaceshipSide, spaceshipDir));
glm::mat4 specshipCameraRotrationMatrix = glm::mat4({
spaceshipSide.x,spaceshipSide.y,spaceshipSide.z,0,
spaceshipUp.x,spaceshipUp.y,spaceshipUp.z ,0,
-spaceshipDir.x,-spaceshipDir.y,-spaceshipDir.z,0,
0.,0.,0.,1.,
});
//drawObjectColor(shipContext,
// glm::translate(cameraPos + 1.5 * cameraDir + cameraUp * -0.5f) * inveseCameraRotrationMatrix * glm::eulerAngleY(glm::pi<float>()),
// glm::vec3(0.3, 0.3, 0.5)
// );
drawObjectColor(shipContext,
glm::translate(spaceshipPos) * specshipCameraRotrationMatrix * glm::eulerAngleY(glm::pi<float>()) * glm::scale(glm::vec3(0.2f)),
glm::vec3(0.3, 0.3, 0.5)
);
glfwSwapBuffers(window);
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
aspectRatio = width / float(height);
glViewport(0, 0, width, height);
}
void loadModelToContext(std::string path, Core::RenderContext& context)
{
Assimp::Importer import;
const aiScene* scene = import.ReadFile(path, aiProcess_Triangulate | aiProcess_CalcTangentSpace);
if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
std::cout << "ERROR::ASSIMP::" << import.GetErrorString() << std::endl;
return;
}
context.initFromAssimpMesh(scene->mMeshes[0]);
}
void init(GLFWwindow* window)
{
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glEnable(GL_DEPTH_TEST);
program = shaderLoader.CreateProgram("shaders/shader_5_1.vert", "shaders/shader_5_1.frag");
loadModelToContext("./models/sphere.obj", sphereContext);
loadModelToContext("./models/spaceship.obj", shipContext);
}
void shutdown(GLFWwindow* window)
{
shaderLoader.DeleteProgram(program);
}
//obsluga wejscia
void processInput(GLFWwindow* window)
{
glm::vec3 spaceshipSide = glm::normalize(glm::cross(spaceshipDir, glm::vec3(0.f, 1.f, 0.f)));
glm::vec3 spaceshipUp = glm::vec3(0.f, 1.f, 0.f);
float angleSpeed = 0.05f * deltaTime * 60;
float moveSpeed = 0.05f * deltaTime * 60;
if (glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS) {
angleSpeed *= 3;
moveSpeed *= 3;
}
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(window, true);
}
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
spaceshipPos += spaceshipDir * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
spaceshipPos -= spaceshipDir * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_X) == GLFW_PRESS)
spaceshipPos += spaceshipSide * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_Z) == GLFW_PRESS)
spaceshipPos -= spaceshipSide * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
spaceshipPos += spaceshipUp * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
spaceshipPos -= spaceshipUp * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
spaceshipDir = glm::vec3(glm::eulerAngleY(angleSpeed) * glm::vec4(spaceshipDir, 0));
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
spaceshipDir = glm::vec3(glm::eulerAngleY(-angleSpeed) * glm::vec4(spaceshipDir, 0));
cameraPos = spaceshipPos - 0.3f * spaceshipDir + glm::vec3(0, 1, 0) * 0.1f;
cameraDir = spaceshipDir;
//cameraDir = glm::normalize(-cameraPos);
}
// funkcja jest glowna petla
void renderLoop(GLFWwindow* window) {
while (!glfwWindowShouldClose(window))
{
processInput(window);
renderScene(window);
glfwPollEvents();
}
}
//}

Some files were not shown because too many files have changed in this diff Show More