crossover working version
This commit is contained in:
parent
8b1e390e6b
commit
74fd6d9263
@ -11,46 +11,127 @@ from domain.world import World
|
||||
from AI_brain.rotate_and_go_aStar import RotateAndGoAStar, State
|
||||
|
||||
|
||||
steps_distance_cashed = {}
|
||||
hits = 0
|
||||
misses = 0
|
||||
|
||||
|
||||
class Cashed_sub_paths(dict):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def __missing__(self, key):
|
||||
self[key] = Cashed_sub_paths()
|
||||
return self[key]
|
||||
|
||||
|
||||
class Cashed_sub_path:
|
||||
def __init__(self, sub_path: list[str] = [], distance: int = 0):
|
||||
self.sub_path = sub_path
|
||||
self.distance = distance
|
||||
|
||||
|
||||
steps_distance_cashed: dict[tuple[int, int], Cashed_sub_path] = Cashed_sub_paths()
|
||||
|
||||
|
||||
class Path:
|
||||
def __init__(self):
|
||||
self.walk = []
|
||||
self.permutation = []
|
||||
self.real_path = []
|
||||
self.distance = 0
|
||||
|
||||
def random_walk(self, dusts: list[Entity]):
|
||||
random_permutation = generate_random_permutation(len(dusts))
|
||||
self.walk = addStopsForStopStation(
|
||||
random_permutation, config.getint("CONSTANT", "BananaFilling")
|
||||
permutation = generate_random_permutation(len(dusts))
|
||||
self.permutation = permutation
|
||||
|
||||
self.walk = addStartAndStation(
|
||||
permutation, config.getint("CONSTANT", "BananaFilling")
|
||||
)
|
||||
|
||||
def calculate_distance(self, world: World):
|
||||
distance = 0
|
||||
for i in range(len(self.walk) - 1):
|
||||
distance += self.step_distance(self.walk[i], self.walk[i + 1], world)
|
||||
next_distance, next_real_path = self.step_distance(
|
||||
self.walk[i], self.walk[i + 1], world
|
||||
)
|
||||
distance += next_distance
|
||||
|
||||
# BUG this part is not working and is not used, B.1 must be resolved
|
||||
self.real_path = self.real_path + ["DEFAULT_ROTATION"] + next_real_path
|
||||
|
||||
self.distance = distance
|
||||
|
||||
def step_distance(self, from_id: int, to_id: int, world: World) -> int:
|
||||
def step_distance(
|
||||
self, from_id: int, to_id: int, world: World
|
||||
) -> tuple[int, list[str]]:
|
||||
global hits, misses
|
||||
if (from_id, to_id) in steps_distance_cashed:
|
||||
return steps_distance_cashed[(from_id, to_id)]
|
||||
hits += 1
|
||||
distance = steps_distance_cashed[(from_id, to_id)].distance
|
||||
sub_path = steps_distance_cashed[(from_id, to_id)].sub_path
|
||||
return distance, sub_path
|
||||
|
||||
misses += 1
|
||||
path_searcher = RotateAndGoAStar(
|
||||
world,
|
||||
self.getPosition(from_id, world.dustList, world.doc_station),
|
||||
self.getPosition(to_id, world.dustList, world.doc_station),
|
||||
self.getPosition(from_id, world.dustList),
|
||||
self.getPosition(to_id, world.dustList),
|
||||
)
|
||||
path_searcher.search()
|
||||
number_of_go = path_searcher.number_of_moves_forward()
|
||||
steps_distance_cashed[(from_id, to_id)] = path_searcher.cost
|
||||
steps_distance_cashed[(to_id, from_id)] = path_searcher.cost
|
||||
return path_searcher.cost
|
||||
|
||||
def getPosition(self, number: int, dusts: list[Entity], station: Entity) -> State:
|
||||
steps_distance_cashed[(from_id, to_id)] = Cashed_sub_path(
|
||||
path_searcher.actions, path_searcher.cost
|
||||
)
|
||||
|
||||
# BUG B.1 inverse path
|
||||
inverse_sub_path = path_searcher.actions.copy()
|
||||
steps_distance_cashed[(to_id, from_id)] = Cashed_sub_path(
|
||||
inverse_sub_path, path_searcher.cost
|
||||
)
|
||||
return path_searcher.cost, path_searcher.actions
|
||||
|
||||
def inverse_sub_path(sub_path: list[str]) -> list[str]:
|
||||
sub_path.reverse()
|
||||
for command in sub_path:
|
||||
command.replace("RL", "RR")
|
||||
command.replace("RR", "RR")
|
||||
|
||||
def getPosition(
|
||||
self,
|
||||
number: int,
|
||||
dustList: list[Entity],
|
||||
) -> State:
|
||||
if number == -1:
|
||||
return State(station.x, station.y)
|
||||
dock_start_x, dock_start_y = config.get(
|
||||
"CONSTANT", "DockStationStartPosition"
|
||||
).split(",")
|
||||
dock_start_x, dock_start_y = int(dock_start_x), int(dock_start_y)
|
||||
|
||||
return State(dusts[number].x, dusts[number].y)
|
||||
return State(dock_start_x, dock_start_y)
|
||||
|
||||
if number == -2:
|
||||
vacuum_start_x, vacuum_start_y = config.get(
|
||||
"CONSTANT", "RobotStartPosition"
|
||||
).split(",")
|
||||
|
||||
vacuum_start_x, vacuum_start_y = int(vacuum_start_x), int(vacuum_start_y)
|
||||
return State(vacuum_start_x, vacuum_start_y)
|
||||
|
||||
return State(dustList[number].x, dustList[number].y)
|
||||
|
||||
def get_real_path(self, world: World):
|
||||
full_path = []
|
||||
|
||||
for index_place in range(len(self.walk) - 1):
|
||||
path_searcher = RotateAndGoAStar(
|
||||
world,
|
||||
self.getPosition(self.walk[index_place], world.dustList),
|
||||
self.getPosition(self.walk[index_place + 1], world.dustList),
|
||||
)
|
||||
path_searcher.search()
|
||||
full_path = full_path + ["DEFAULT_ROTATION"] + path_searcher.actions
|
||||
|
||||
self.real_path = full_path
|
||||
|
||||
|
||||
def generate_random_permutation(n):
|
||||
@ -63,12 +144,104 @@ def generate_random_permutation(n):
|
||||
return numbers
|
||||
|
||||
|
||||
def addStopsForStopStation(permutation: list[int], bananaFilling: int):
|
||||
# BUG solution: inverse direction at the last step
|
||||
def addStartAndStation(permutation: list[int], bananaFilling: int):
|
||||
frequency = math.ceil(100 / bananaFilling)
|
||||
numer_of_stops = math.ceil(len(permutation) / frequency)
|
||||
walk = permutation.copy()
|
||||
|
||||
for i in range(1, numer_of_stops):
|
||||
permutation.insert((frequency + 1) * i - 1, -1)
|
||||
permutation.insert(len(permutation), -1)
|
||||
walk.insert((frequency + 1) * i - 1, -1)
|
||||
walk.insert(len(walk), -1)
|
||||
walk.insert(0, -2)
|
||||
|
||||
return permutation
|
||||
return walk
|
||||
|
||||
|
||||
class GeneticAlgorytm:
|
||||
def __init__(self, world: World):
|
||||
self.world = world
|
||||
self.population_size = config.getint("GENETIC_ALGORITHM", "PopulationSize")
|
||||
self.mutation_probability = config.getfloat(
|
||||
"GENETIC_ALGORITHM", "MutationProbability"
|
||||
)
|
||||
self.iteration_number = config.getint("GENETIC_ALGORITHM", "IterationNumber")
|
||||
self.descendants_number = config.getint(
|
||||
"GENETIC_ALGORITHM", "DescendantsNumber"
|
||||
)
|
||||
self.dusts = world.dustList
|
||||
self.doc_station = world.doc_station
|
||||
self.paths: list[Path] = []
|
||||
self.checked_permutations = {}
|
||||
|
||||
self.best_path = None
|
||||
self.best_distance = math.inf
|
||||
self.best_real_path = []
|
||||
|
||||
def generate_population(self):
|
||||
for i in range(self.population_size):
|
||||
path = Path()
|
||||
path.random_walk(self.dusts)
|
||||
self.checked_permutations[tuple(path.permutation)] = True
|
||||
path.calculate_distance(self.world)
|
||||
self.paths.append(path)
|
||||
|
||||
def evaluate_population(self):
|
||||
self.paths.sort(key=lambda x: x.distance, reverse=False)
|
||||
|
||||
self.best_distance = self.paths[0].distance
|
||||
self.best_path = self.paths[0]
|
||||
|
||||
for path in self.paths[self.population_size :]:
|
||||
del self.checked_permutations[tuple(path.permutation)]
|
||||
|
||||
self.paths = self.paths[: self.population_size]
|
||||
|
||||
def create_child(self, parent1: Path, parent2: Path) -> Path:
|
||||
child = Path()
|
||||
|
||||
child.permutation = parent1.permutation[: len(parent1.permutation) // 2]
|
||||
|
||||
# Add missing items from parent2 in the order they appear
|
||||
for item in parent2.permutation:
|
||||
if item not in child.permutation:
|
||||
child.permutation.append(item)
|
||||
|
||||
child.walk = addStartAndStation(
|
||||
child.permutation, config.getint("CONSTANT", "BananaFilling")
|
||||
)
|
||||
|
||||
child.calculate_distance(self.world)
|
||||
|
||||
return child
|
||||
|
||||
def run(self):
|
||||
self.generate_population()
|
||||
|
||||
for i in range(self.iteration_number):
|
||||
self.crossover()
|
||||
# self.mutate()
|
||||
|
||||
self.evaluate_population()
|
||||
self.best_real_path = self.paths[0].get_real_path(self.world)
|
||||
|
||||
print(hits, (misses + hits))
|
||||
|
||||
print(hits / (misses + hits))
|
||||
|
||||
def crossover(self):
|
||||
for i in range(self.descendants_number):
|
||||
parent1 = self.paths[random.randint(0, self.population_size - 1)]
|
||||
|
||||
parent2 = self.paths[random.randint(0, self.population_size - 1)]
|
||||
|
||||
child = self.create_child(parent1, parent2)
|
||||
while tuple(child.permutation) in self.checked_permutations:
|
||||
parent1 = self.paths[random.randint(0, self.population_size - 1)]
|
||||
parent2 = self.paths[random.randint(0, self.population_size - 1)]
|
||||
child = self.create_child(parent1, parent2)
|
||||
|
||||
self.checked_permutations[tuple(child.permutation)] = True
|
||||
self.paths.append(child)
|
||||
|
||||
self.evaluate_population()
|
||||
|
11
config.ini
11
config.ini
@ -8,10 +8,19 @@ NumberOfBananas = 5
|
||||
NumberOfEarrings = 3
|
||||
NumberOfPlants = 5
|
||||
BananaFilling = 25
|
||||
RobotStartPosition = 1, 1
|
||||
DockStationStartPosition = 9, 8
|
||||
#9,8
|
||||
|
||||
[NEURAL_NETWORK]
|
||||
is_neural_network_off = True
|
||||
|
||||
[AI_BRAIN]
|
||||
mode = full_clean
|
||||
#accept: full_clean, to_station
|
||||
#accept: full_clean, to_station
|
||||
|
||||
[GENETIC_ALGORITHM]
|
||||
PopulationSize = 20
|
||||
DescendantsNumber = 5
|
||||
MutationProbability = 0.1
|
||||
IterationNumber = 100
|
||||
|
@ -8,7 +8,7 @@ class World:
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.dust = [[[] for j in range(height)] for i in range(width)]
|
||||
self.dustList = []
|
||||
self.dustList: list[Entity] = []
|
||||
self.obstacles = [[[] for j in range(height)] for i in range(width)]
|
||||
self.entity = [[[] for j in range(height)] for i in range(width)]
|
||||
|
||||
|
42
main.py
42
main.py
@ -16,7 +16,7 @@ from domain.entities.earring import Earring
|
||||
from domain.entities.docking_station import Doc_Station
|
||||
from domain.world import World
|
||||
from view.renderer import Renderer
|
||||
from AI_brain.genetic_algorytm import Path
|
||||
from AI_brain.genetic_algorytm import GeneticAlgorytm, Path
|
||||
|
||||
if not config.getboolean("NEURAL_NETWORK", "is_neural_network_off"):
|
||||
from AI_brain.image_recognition import VacuumRecognizer
|
||||
@ -53,9 +53,6 @@ class Main:
|
||||
def run_robot(self):
|
||||
self.renderer.render(self.world)
|
||||
|
||||
# path_searcher = GoAnyDirectionBFS(self.world, start_state, end_state)
|
||||
# path_searcher = RotateAndGoBFS(self.world, start_state, end_state)
|
||||
|
||||
if config["AI_BRAIN"]["mode"] == "to_station":
|
||||
start_state = State(self.world.vacuum.x, self.world.vacuum.y)
|
||||
end_state = State(self.world.doc_station.x, self.world.doc_station.y)
|
||||
@ -67,13 +64,20 @@ class Main:
|
||||
exit(0)
|
||||
print(path_searcher.actions)
|
||||
print(path_searcher.cost)
|
||||
robot_actions = path_searcher.actions
|
||||
|
||||
elif config["AI_BRAIN"]["mode"] == "full_clean":
|
||||
x = Path()
|
||||
x.random_walk(self.world.dustList)
|
||||
x.calculate_distance(self.world)
|
||||
print(x.walk)
|
||||
print(x.distance)
|
||||
exit(0)
|
||||
genetic_searcher = GeneticAlgorytm(self.world)
|
||||
genetic_searcher.run()
|
||||
|
||||
print(
|
||||
str(genetic_searcher.best_path.walk)
|
||||
+ ": "
|
||||
+ str(genetic_searcher.best_distance)
|
||||
)
|
||||
|
||||
robot_actions = genetic_searcher.best_path.real_path
|
||||
|
||||
else:
|
||||
print("Wrong mode")
|
||||
exit(0)
|
||||
@ -83,8 +87,8 @@ class Main:
|
||||
if event.type == pygame.QUIT:
|
||||
self.running = False
|
||||
|
||||
if len(path_searcher.actions) > 0:
|
||||
action_direction = path_searcher.actions.pop(0)
|
||||
if len(robot_actions) > 0:
|
||||
action_direction = robot_actions.pop(0)
|
||||
# self.handle_action1(action_direction)
|
||||
self.handle_action2(action_direction)
|
||||
|
||||
@ -129,6 +133,8 @@ class Main:
|
||||
self.world.vacuum.direction[1],
|
||||
-self.world.vacuum.direction[0],
|
||||
)
|
||||
elif action == "DEFAULT_ROTATION":
|
||||
self.world.vacuum.direction = (1, 0)
|
||||
|
||||
def process_input(self):
|
||||
for event in pygame.event.get():
|
||||
@ -163,8 +169,14 @@ class Main:
|
||||
def generate_world(tiles_x: int, tiles_y: int) -> World:
|
||||
if config.getboolean("NEURAL_NETWORK", "is_neural_network_off"):
|
||||
world = World(tiles_x, tiles_y)
|
||||
world.vacuum = Vacuum(1, 1)
|
||||
world.doc_station = Doc_Station(9, 8)
|
||||
|
||||
x, y = config.get("CONSTANT", "RobotStartPosition").split(",")
|
||||
x, y = int(x), int(y)
|
||||
world.vacuum = Vacuum(x, y)
|
||||
|
||||
x, y = config.get("CONSTANT", "DockStationStartPosition").split(",")
|
||||
x, y = int(x), int(y)
|
||||
world.doc_station = Doc_Station(x, y)
|
||||
if config.getboolean("APP", "cat"):
|
||||
world.cat = Cat(7, 8)
|
||||
world.add_entity(world.cat)
|
||||
@ -176,6 +188,8 @@ def generate_world(tiles_x: int, tiles_y: int) -> World:
|
||||
world.add_entity(Entity(3, 4, "PLANT2"))
|
||||
world.add_entity(Entity(8, 8, "PLANT2"))
|
||||
world.add_entity(Entity(9, 3, "PLANT3"))
|
||||
|
||||
numberOfEarrings = config.getint("CONSTANT", "NumberOfEarrings")
|
||||
world.add_entity(Earring(9, 7))
|
||||
world.add_entity(Earring(5, 5))
|
||||
world.add_entity(Earring(4, 6))
|
||||
|
Loading…
Reference in New Issue
Block a user