a-star-tim #21
138
AI_brain/rotate_and_go_a_star.py
Normal file
138
AI_brain/rotate_and_go_a_star.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import math
|
||||||
|
import queue
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from domain.world import World
|
||||||
|
|
||||||
|
|
||||||
|
class State:
|
||||||
|
def __init__(self, x, y, direction=(1, 0)):
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
self.direction = direction
|
||||||
|
|
||||||
|
def __hash__(self):
|
||||||
|
return hash((self.x, self.y))
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
return (self.x == other.x and self.y == other.y
|
||||||
|
and self.direction == other.direction)
|
||||||
|
|
||||||
|
|
||||||
|
class Node:
|
||||||
|
def __init__(self, state: State):
|
||||||
|
self.state = state
|
||||||
|
self.parent = None
|
||||||
|
self.action = None
|
||||||
|
self.g = 0
|
||||||
|
self.h = 0
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(order=True)
|
||||||
|
class PrioritizedItem:
|
||||||
|
priority: int
|
||||||
|
item: Any = field(compare=False)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return iter((self.priority, self.item))
|
||||||
|
|
||||||
|
|
||||||
|
def action_sequence(node: Node):
|
||||||
|
actions = []
|
||||||
|
while node.parent:
|
||||||
|
actions.append(node.action)
|
||||||
|
node = node.parent
|
||||||
|
|
||||||
|
print(node.g)
|
||||||
|
actions.reverse()
|
||||||
|
return actions
|
||||||
|
|
||||||
|
|
||||||
|
class RotateAndGoAStar:
|
||||||
|
def __init__(self, world: World, start_state: State, goal_state: State):
|
||||||
|
self.world = world
|
||||||
|
self.start_state = start_state
|
||||||
|
self.goal_state = goal_state
|
||||||
|
self.fringe = queue.PriorityQueue()
|
||||||
|
self.enqueued_states = {}
|
||||||
|
self.explored = set()
|
||||||
|
self.actions = []
|
||||||
|
|
||||||
|
def search(self):
|
||||||
|
h = abs(self.start_state.x - self.goal_state.x) ** 2 + abs(self.start_state.y - self.goal_state.y) ** 2
|
||||||
|
self.fringe.put(PrioritizedItem(h, Node(self.start_state)))
|
||||||
|
|
||||||
|
while not self.fringe.empty():
|
||||||
|
priority, elem = self.fringe.get()
|
||||||
|
|
||||||
|
self.enqueued_states.pop(elem, 0)
|
||||||
|
|
||||||
|
if self.is_goal(elem.state):
|
||||||
|
self.actions = action_sequence(elem)
|
||||||
|
return True
|
||||||
|
|
||||||
|
self.explored.add(elem.state)
|
||||||
|
|
||||||
|
for (action, state) in self.successors(elem.state):
|
||||||
|
next_node = Node(state)
|
||||||
|
next_node.action = action
|
||||||
|
next_node.parent = elem
|
||||||
|
next_node.g = (elem.g
|
||||||
|
+ abs(elem.state.x - state.x)
|
||||||
|
+ abs(elem.state.y - state.y)
|
||||||
|
+ self.world.get_cost(state.x, state.y)
|
||||||
|
)
|
||||||
|
|
||||||
|
next_node.h = abs(state.x - self.goal_state.x) + abs(state.y - self.goal_state.y)
|
||||||
|
self.print_fringe()
|
||||||
|
f = next_node.g + next_node.h
|
||||||
|
|
||||||
|
if state not in self.enqueued_states and state not in self.explored:
|
||||||
|
self.fringe.put(PrioritizedItem(f, next_node))
|
||||||
|
self.enqueued_states[state] = f
|
||||||
|
elif self.enqueued_states.get(state, -math.inf) > f:
|
||||||
|
self.add_existed(next_node, f)
|
||||||
|
self.enqueued_states.pop(state, 0)
|
||||||
|
self.enqueued_states[state] = f
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
def print_fringe(self):
|
||||||
|
elems = []
|
||||||
|
while not self.fringe.empty():
|
||||||
|
e = self.fringe.get()
|
||||||
|
elems.append(e)
|
||||||
|
print(str(e.item.state.x) + ":" + str(e.item.state.x))
|
||||||
|
|
||||||
|
for e in elems:
|
||||||
|
self.fringe.put(e)
|
||||||
|
|
||||||
|
def add_existed(self, node: Node, f: int):
|
||||||
|
old = []
|
||||||
|
while not self.fringe.empty():
|
||||||
|
e = self.fringe.get()
|
||||||
|
if e.item.state == node.state:
|
||||||
|
break
|
||||||
|
old.append(e)
|
||||||
|
self.fringe.put(PrioritizedItem(f, node))
|
||||||
|
for e in old:
|
||||||
|
self.fringe.put(e)
|
||||||
|
|
||||||
|
def successors(self, state: State):
|
||||||
|
new_successors = [
|
||||||
|
# rotate right
|
||||||
|
("RR", State(state.x, state.y, (-state.direction[1], state.direction[0]))),
|
||||||
|
# rotate left
|
||||||
|
("RL", State(state.x, state.y, (state.direction[1], -state.direction[0]))),
|
||||||
|
]
|
||||||
|
if self.world.accepted_move(state.x + state.direction[0], state.y + state.direction[1]):
|
||||||
|
new_successors.append(
|
||||||
|
("GO", State(state.x + state.direction[0], state.y + state.direction[1], state.direction)))
|
||||||
|
return new_successors
|
||||||
|
|
||||||
|
def is_goal(self, state: State) -> bool:
|
||||||
|
return (
|
||||||
|
state.x == self.goal_state.x
|
||||||
|
and state.y == self.goal_state.y
|
||||||
|
)
|
@ -3,6 +3,7 @@ from domain.entities.entity import Entity
|
|||||||
|
|
||||||
class World:
|
class World:
|
||||||
def __init__(self, width: int, height: int) -> object:
|
def __init__(self, width: int, height: int) -> object:
|
||||||
|
self.costs = [[1000 for j in range(height)] for i in range(width)]
|
||||||
self.width = width
|
self.width = width
|
||||||
self.height = height
|
self.height = height
|
||||||
self.dust = [[[] for j in range(height)] for i in range(width)]
|
self.dust = [[[] for j in range(height)] for i in range(width)]
|
||||||
@ -47,3 +48,6 @@ class World:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
def get_cost(self, x, y):
|
||||||
|
return self.costs[x][y]
|
||||||
|
39
main.py
39
main.py
@ -12,7 +12,8 @@ from domain.entities.docking_station import Doc_Station
|
|||||||
from domain.world import World
|
from domain.world import World
|
||||||
from view.renderer import Renderer
|
from view.renderer import Renderer
|
||||||
# from AI_brain.movement import GoAnyDirectionBFS, State
|
# from AI_brain.movement import GoAnyDirectionBFS, State
|
||||||
from AI_brain.rotate_and_go_bfs import RotateAndGoBFS, State
|
# from AI_brain.rotate_and_go_bfs import RotateAndGoBFS, State
|
||||||
|
from AI_brain.rotate_and_go_a_star import RotateAndGoAStar, State
|
||||||
|
|
||||||
|
|
||||||
config = configparser.ConfigParser()
|
config = configparser.ConfigParser()
|
||||||
@ -50,7 +51,8 @@ class Main:
|
|||||||
end_state = State(self.world.doc_station.x, self.world.doc_station.y)
|
end_state = State(self.world.doc_station.x, self.world.doc_station.y)
|
||||||
|
|
||||||
# path_searcher = GoAnyDirectionBFS(self.world, start_state, end_state)
|
# path_searcher = GoAnyDirectionBFS(self.world, start_state, end_state)
|
||||||
path_searcher = RotateAndGoBFS(self.world, start_state, end_state)
|
# path_searcher = RotateAndGoBFS(self.world, start_state, end_state)
|
||||||
|
path_searcher = RotateAndGoAStar(self.world, start_state, end_state)
|
||||||
if not path_searcher.search():
|
if not path_searcher.search():
|
||||||
print("No solution")
|
print("No solution")
|
||||||
exit(0)
|
exit(0)
|
||||||
@ -132,11 +134,11 @@ class Main:
|
|||||||
|
|
||||||
def generate_world(tiles_x: int, tiles_y: int) -> World:
|
def generate_world(tiles_x: int, tiles_y: int) -> World:
|
||||||
world = World(tiles_x, tiles_y)
|
world = World(tiles_x, tiles_y)
|
||||||
for _ in range(10):
|
for _ in range(20):
|
||||||
temp_x = randint(0, tiles_x - 1)
|
temp_x = randint(0, tiles_x - 1)
|
||||||
temp_y = randint(0, tiles_y - 1)
|
temp_y = randint(0, tiles_y - 1)
|
||||||
world.add_entity(Entity(temp_x, temp_y, "PEEL"))
|
world.add_entity(Entity(temp_x, temp_y, "PEEL"))
|
||||||
world.vacuum = Vacuum(1, 1)
|
world.vacuum = Vacuum(0, 0)
|
||||||
world.doc_station = Doc_Station(9, 8)
|
world.doc_station = Doc_Station(9, 8)
|
||||||
if config.getboolean("APP", "cat"):
|
if config.getboolean("APP", "cat"):
|
||||||
world.cat = Cat(7, 8)
|
world.cat = Cat(7, 8)
|
||||||
@ -146,6 +148,35 @@ def generate_world(tiles_x: int, tiles_y: int) -> World:
|
|||||||
world.add_entity(Entity(3, 4, "PLANT2"))
|
world.add_entity(Entity(3, 4, "PLANT2"))
|
||||||
world.add_entity(Entity(8, 8, "PLANT2"))
|
world.add_entity(Entity(8, 8, "PLANT2"))
|
||||||
world.add_entity(Entity(9, 3, "PLANT3"))
|
world.add_entity(Entity(9, 3, "PLANT3"))
|
||||||
|
|
||||||
|
# TEST
|
||||||
|
# world.costs[9][3] = 1000
|
||||||
|
# world.costs[8][3] = 1000
|
||||||
|
# world.costs[7][3] = 1000
|
||||||
|
# world.costs[6][3] = 1000
|
||||||
|
# world.costs[5][3] = 1000
|
||||||
|
# world.costs[4][3] = 1000
|
||||||
|
# world.costs[3][3] = 1000
|
||||||
|
# world.costs[2][3] = 1000
|
||||||
|
# # world.costs[1][3] = 1000
|
||||||
|
# world.costs[0][3] = 1000
|
||||||
|
#
|
||||||
|
# world.costs[2][4] = 1000
|
||||||
|
# world.costs[1][5] = 1000
|
||||||
|
# world.costs[5][4] = 1000
|
||||||
|
# # world.costs[5][5] = 1000
|
||||||
|
# world.costs[5][6] = 1000
|
||||||
|
# world.costs[5][7] = 1000
|
||||||
|
# world.costs[5][8] = 1000
|
||||||
|
# world.costs[5][9] = 1000
|
||||||
|
|
||||||
|
for x in range(world.width):
|
||||||
|
for y in range(world.height):
|
||||||
|
if world.is_garbage_at(x, y):
|
||||||
|
world.costs[x][y] = 1;
|
||||||
|
|
||||||
|
# world.costs[0][0] = -1000
|
||||||
|
|
||||||
return world
|
return world
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user