master #1

Merged
s473554 merged 7 commits from s473554/SztIn_gr.234798:master into master 2023-03-23 13:05:47 +01:00
2 changed files with 80 additions and 2 deletions
Showing only changes of commit 87950517c5 - Show all commits

53
main.py
View File

@ -1,2 +1,51 @@
from field import *
draw_interface()
import numpy as np
import tensorflow as tf
from tensorflow import keras
def normalize(image, label):
return image / 255, label
directoryTRAIN = "C:/Users/KimD/PycharmProjects/Traktor_V1/Vegetable Images/train"
directoryVALIDATION = "C:/Users/KimD/PycharmProjects/Traktor_V1/Vegetable Images/validation"
train_ds = tf.keras.utils.image_dataset_from_directory(directoryTRAIN,
seed=123, batch_size=32,
image_size=(224, 224), color_mode='rgb')
val_ds = tf.keras.utils.image_dataset_from_directory(directoryVALIDATION,
seed=123, batch_size=32,
image_size=(224, 224), color_mode='rgb')
train_ds = train_ds.map(normalize)
val_ds = val_ds.map(normalize)
model = keras.Sequential([
keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(224, 224, 3)),
keras.layers.MaxPool2D((2, 2)),
keras.layers.Conv2D(128, (3, 3), activation='relu'),
keras.layers.MaxPool2D((2, 2)),
keras.layers.Conv2D(256, (3, 3), activation='relu'),
keras.layers.MaxPool2D((2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(1024, activation='relu'),
keras.layers.Dense(9, activation='softmax')
])
print(model.summary())
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
trainHistory = model.fit(train_ds, epochs=4, validation_data=val_ds)
model = keras.models.load_model("C:/Users/KimD/PycharmProjects/Traktor_V1/mode2.h5")
(loss, accuracy) = model.evaluate(val_ds)
print(loss)
print(accuracy)
# model.save("mode2.h5")

29
proverka.py Normal file
View File

@ -0,0 +1,29 @@
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
import cv2
directory = "C:/Users/KimD/PycharmProjects/Traktor_V1/Vegetable Images/test"
test_ds = tf.keras.utils.image_dataset_from_directory(directory, validation_split=0.2, image_size=(224, 224),
subset="validation", seed=123, batch_size=32)
model = keras.models.load_model("C:/Users/KimD/PycharmProjects/Traktor_V1/mode2.h5")
# predictions = model.predict(test_ds.take(32))
class_names = test_ds.class_names
img = cv2.imread('C:/Users/KimD/PycharmProjects/Traktor_V1/Vegetable Images/test/Carrot/1001.jpg')
cv2.imshow("lala", img)
cv2.waitKey(0)
img = (np.expand_dims(img, 0))
print(class_names)
predictions = model.predict(img)
print(predictions)