34 lines
1.0 KiB
Python
34 lines
1.0 KiB
Python
import os
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow import keras
|
|
import cv2
|
|
|
|
directory = "C:/Users/KimD/PycharmProjects/Traktor_V1/Vegetable Images/test"
|
|
|
|
|
|
class VegebatlesRecognizer:
|
|
|
|
def recognize(self, image_path) -> str:
|
|
model = keras.models.load_model("C:/Users/KimD/PycharmProjects/Traktor_V1/mode2.h5")
|
|
class_names = ['Bean', 'Broccoli', 'Cabbage', 'Capsicum', 'Carrot', 'Cucumber', 'Potato', 'Pumpkin', 'Tomato']
|
|
|
|
img = cv2.imread(image_path)
|
|
# cv2.imshow("lala", img)
|
|
# cv2.waitKey(0)
|
|
img = (np.expand_dims(img, 0))
|
|
|
|
predictions = model.predict(img)[0].tolist()
|
|
|
|
print(class_names)
|
|
print(predictions)
|
|
print(max(predictions))
|
|
print(predictions.index(max(predictions)))
|
|
|
|
return class_names[predictions.index(max(predictions))]
|
|
|
|
|
|
# image_path = 'C:/Users/KimD/PycharmProjects/Traktor_V1/Vegetable Images/test/Carrot/1001.jpg'
|
|
# uio = VegebatlesRecognizer()
|
|
# print(uio.recognize(image_path))
|