neural network config
This commit is contained in:
parent
e2c2ea8f0e
commit
af7027a90f
3
.gitignore
vendored
3
.gitignore
vendored
@ -4,4 +4,5 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
|
|
||||||
#PyCharm
|
#PyCharm
|
||||||
.idea/
|
.idea/
|
||||||
|
AI_brain/model.h5
|
||||||
|
@ -5,18 +5,19 @@ from tensorflow import keras
|
|||||||
import cv2
|
import cv2
|
||||||
import random
|
import random
|
||||||
|
|
||||||
#You can download model from https://uam-my.sharepoint.com/:f:/g/personal/pavbia_st_amu_edu_pl/EmBHjnETuk5LiCZS6xk7AnIBNsnffR3Sygf8EX2bhR1w4A
|
# You can download model from https://uam-my.sharepoint.com/:f:/g/personal/pavbia_st_amu_edu_pl/EmBHjnETuk5LiCZS6xk7AnIBNsnffR3Sygf8EX2bhR1w4A
|
||||||
#Change the path to model + to datasets (string 12 + strings 35,41,47,53)
|
# Change the path to model + to datasets (string 12 + strings 35,41,47,53)
|
||||||
|
|
||||||
|
|
||||||
class VacuumRecognizer:
|
class VacuumRecognizer:
|
||||||
model = keras.models.load_model('AI_brain\model.h5') #Neuron model path
|
model = keras.models.load_model("AI_brain\model.h5") # Neuron model path
|
||||||
|
|
||||||
def recognize(self, image_path) -> str:
|
def recognize(self, image_path) -> str:
|
||||||
class_names = ['Banana', 'Cat', 'Earings', 'Plant']
|
class_names = ["Banana", "Cat", "Earings", "Plant"]
|
||||||
|
|
||||||
img = cv2.imread(image_path, flags=cv2.IMREAD_GRAYSCALE)
|
img = cv2.imread(image_path, flags=cv2.IMREAD_GRAYSCALE)
|
||||||
cv2.waitKey(0)
|
cv2.waitKey(0)
|
||||||
img = (np.expand_dims(img, 0))
|
img = np.expand_dims(img, 0)
|
||||||
|
|
||||||
predictions = self.model.predict(img)[0].tolist()
|
predictions = self.model.predict(img)[0].tolist()
|
||||||
|
|
||||||
@ -31,31 +32,43 @@ class VacuumRecognizer:
|
|||||||
return class_names[predictions.index(max(predictions))]
|
return class_names[predictions.index(max(predictions))]
|
||||||
|
|
||||||
def get_random_dir(self, type) -> str:
|
def get_random_dir(self, type) -> str:
|
||||||
if type == 'Plant':
|
if type == "Plant":
|
||||||
plant_image_paths = 'C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Plant' #Plant dataset path
|
plant_image_paths = "C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Plant" # Plant dataset path
|
||||||
plant_dirs = os.listdir(plant_image_paths)
|
plant_dirs = os.listdir(plant_image_paths)
|
||||||
full_path = plant_image_paths + '\\' + plant_dirs[random.randint(0, len(plant_dirs)-1)]
|
full_path = (
|
||||||
|
plant_image_paths
|
||||||
|
+ "\\"
|
||||||
|
+ plant_dirs[random.randint(0, len(plant_dirs) - 1)]
|
||||||
|
)
|
||||||
print(full_path)
|
print(full_path)
|
||||||
return full_path
|
return full_path
|
||||||
elif type == 'Earings':
|
elif type == "Earings":
|
||||||
earnings_image_paths = 'C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Earings' #Earings dataset path
|
earnings_image_paths = "C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Earings" # Earings dataset path
|
||||||
earning_dirs = os.listdir(earnings_image_paths)
|
earning_dirs = os.listdir(earnings_image_paths)
|
||||||
full_path = earnings_image_paths + '\\' + earning_dirs[random.randint(0, len(earning_dirs)-1)]
|
full_path = (
|
||||||
|
earnings_image_paths
|
||||||
|
+ "\\"
|
||||||
|
+ earning_dirs[random.randint(0, len(earning_dirs) - 1)]
|
||||||
|
)
|
||||||
print(full_path)
|
print(full_path)
|
||||||
return full_path
|
return full_path
|
||||||
elif type == 'Banana':
|
elif type == "Banana":
|
||||||
banana_image_paths = 'C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Banana' #Banana dataset path
|
banana_image_paths = "C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Banana" # Banana dataset path
|
||||||
banana_dirs = os.listdir(banana_image_paths)
|
banana_dirs = os.listdir(banana_image_paths)
|
||||||
full_path = banana_image_paths + '\\' + banana_dirs[random.randint(0, len(banana_dirs)-1)]
|
full_path = (
|
||||||
|
banana_image_paths
|
||||||
|
+ "\\"
|
||||||
|
+ banana_dirs[random.randint(0, len(banana_dirs) - 1)]
|
||||||
|
)
|
||||||
print(full_path)
|
print(full_path)
|
||||||
return full_path
|
return full_path
|
||||||
elif type == 'Cat':
|
elif type == "Cat":
|
||||||
cat_image_paths = 'C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Cat' #Cat dataset path
|
cat_image_paths = "C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Cat" # Cat dataset path
|
||||||
cat_dir = os.listdir(cat_image_paths)
|
cat_dir = os.listdir(cat_image_paths)
|
||||||
|
|
||||||
|
|
||||||
#For testing the neuron model
|
# For testing the neuron model
|
||||||
'''image_paths = []
|
"""image_paths = []
|
||||||
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Banana')
|
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Banana')
|
||||||
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Cat')
|
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Cat')
|
||||||
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Earings')
|
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Earings')
|
||||||
@ -65,4 +78,4 @@ uio = VacuumRecognizer()
|
|||||||
for image_path in image_paths:
|
for image_path in image_paths:
|
||||||
dirs = os.listdir(image_path)
|
dirs = os.listdir(image_path)
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
print(uio.recognize(image_path + '\\' + dirs[random.randint(0, len(dirs)-1)]))'''
|
print(uio.recognize(image_path + '\\' + dirs[random.randint(0, len(dirs)-1)]))"""
|
||||||
|
@ -9,4 +9,4 @@ NumberOfEarrings = 3
|
|||||||
NumberOfPlants = 5
|
NumberOfPlants = 5
|
||||||
|
|
||||||
[NEURAL_NETWORK]
|
[NEURAL_NETWORK]
|
||||||
is_nural_network_off = True
|
is_neural_network_off = True
|
31
main.py
31
main.py
@ -3,6 +3,9 @@ from random import randint
|
|||||||
import pygame
|
import pygame
|
||||||
import configparser
|
import configparser
|
||||||
|
|
||||||
|
config = configparser.ConfigParser()
|
||||||
|
config.read("config.ini")
|
||||||
|
|
||||||
from domain.commands.random_cat_move_command import RandomCatMoveCommand
|
from domain.commands.random_cat_move_command import RandomCatMoveCommand
|
||||||
from domain.commands.vacuum_move_command import VacuumMoveCommand
|
from domain.commands.vacuum_move_command import VacuumMoveCommand
|
||||||
from domain.entities.cat import Cat
|
from domain.entities.cat import Cat
|
||||||
@ -13,17 +16,15 @@ from domain.entities.earring import Earring
|
|||||||
from domain.entities.docking_station import Doc_Station
|
from domain.entities.docking_station import Doc_Station
|
||||||
from domain.world import World
|
from domain.world import World
|
||||||
from view.renderer import Renderer
|
from view.renderer import Renderer
|
||||||
from AI_brain.image_recognition import VacuumRecognizer
|
|
||||||
|
if not config.getboolean("NEURAL_NETWORK", "is_neural_network_off"):
|
||||||
|
from AI_brain.image_recognition import VacuumRecognizer
|
||||||
|
|
||||||
# from AI_brain.movement import GoAnyDirectionBFS, State
|
# from AI_brain.movement import GoAnyDirectionBFS, State
|
||||||
# from AI_brain.rotate_and_go_bfs import RotateAndGoBFS, State
|
# from AI_brain.rotate_and_go_bfs import RotateAndGoBFS, State
|
||||||
from AI_brain.rotate_and_go_aStar import RotateAndGoAStar, State
|
from AI_brain.rotate_and_go_aStar import RotateAndGoAStar, State
|
||||||
|
|
||||||
|
|
||||||
config = configparser.ConfigParser()
|
|
||||||
config.read("config.ini")
|
|
||||||
|
|
||||||
|
|
||||||
class Main:
|
class Main:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
tiles_x = 10
|
tiles_x = 10
|
||||||
@ -145,7 +146,7 @@ class Main:
|
|||||||
|
|
||||||
|
|
||||||
def generate_world(tiles_x: int, tiles_y: int) -> World:
|
def generate_world(tiles_x: int, tiles_y: int) -> World:
|
||||||
if config.getboolean("NEURAL_NETWORK", "is_nural_network_off"):
|
if config.getboolean("NEURAL_NETWORK", "is_neural_network_off"):
|
||||||
world = World(tiles_x, tiles_y)
|
world = World(tiles_x, tiles_y)
|
||||||
for _ in range(config.getint("CONSTANT", "NumberOfBananas")):
|
for _ in range(config.getint("CONSTANT", "NumberOfBananas")):
|
||||||
temp_x = randint(0, tiles_x - 1)
|
temp_x = randint(0, tiles_x - 1)
|
||||||
@ -165,15 +166,16 @@ def generate_world(tiles_x: int, tiles_y: int) -> World:
|
|||||||
world.add_entity(Earring(5, 5))
|
world.add_entity(Earring(5, 5))
|
||||||
world.add_entity(Earring(4, 6))
|
world.add_entity(Earring(4, 6))
|
||||||
else:
|
else:
|
||||||
def world_adder(x,y,object,style=None):
|
|
||||||
|
def world_adder(x, y, object, style=None):
|
||||||
print(object)
|
print(object)
|
||||||
if object == 'Plant':
|
if object == "Plant":
|
||||||
world.add_entity(Entity(x, y, f"PLANT{randint(1, 3)}"))
|
world.add_entity(Entity(x, y, f"PLANT{randint(1, 3)}"))
|
||||||
if object == 'Earings':
|
if object == "Earings":
|
||||||
world.add_entity(Earring(x, y))
|
world.add_entity(Earring(x, y))
|
||||||
if object == 'Banana':
|
if object == "Banana":
|
||||||
world.add_entity(Garbage(temp_x, temp_y))
|
world.add_entity(Garbage(temp_x, temp_y))
|
||||||
if object == 'Cat' and config.getboolean("APP", "cat"):
|
if object == "Cat" and config.getboolean("APP", "cat"):
|
||||||
world.add_entity(Cat(x, y))
|
world.add_entity(Cat(x, y))
|
||||||
|
|
||||||
neural_network = VacuumRecognizer()
|
neural_network = VacuumRecognizer()
|
||||||
@ -188,22 +190,21 @@ def generate_world(tiles_x: int, tiles_y: int) -> World:
|
|||||||
for _ in range(config.getint("CONSTANT", "NumberOfPlants")):
|
for _ in range(config.getint("CONSTANT", "NumberOfPlants")):
|
||||||
temp_x = randint(0, tiles_x - 1)
|
temp_x = randint(0, tiles_x - 1)
|
||||||
temp_y = randint(0, tiles_y - 1)
|
temp_y = randint(0, tiles_y - 1)
|
||||||
path = VacuumRecognizer.get_random_dir(neural_network,'Plant')
|
path = VacuumRecognizer.get_random_dir(neural_network, "Plant")
|
||||||
world_adder(temp_x, temp_y, neural_network.recognize(path))
|
world_adder(temp_x, temp_y, neural_network.recognize(path))
|
||||||
|
|
||||||
for _ in range(config.getint("CONSTANT", "NumberOfEarrings")):
|
for _ in range(config.getint("CONSTANT", "NumberOfEarrings")):
|
||||||
temp_x = randint(0, tiles_x - 1)
|
temp_x = randint(0, tiles_x - 1)
|
||||||
temp_y = randint(0, tiles_y - 1)
|
temp_y = randint(0, tiles_y - 1)
|
||||||
path = VacuumRecognizer.get_random_dir(neural_network,'Earings')
|
path = VacuumRecognizer.get_random_dir(neural_network, "Earings")
|
||||||
world_adder(temp_x, temp_y, neural_network.recognize(path))
|
world_adder(temp_x, temp_y, neural_network.recognize(path))
|
||||||
|
|
||||||
for _ in range(config.getint("CONSTANT", "NumberOfBananas")):
|
for _ in range(config.getint("CONSTANT", "NumberOfBananas")):
|
||||||
temp_x = randint(0, tiles_x - 1)
|
temp_x = randint(0, tiles_x - 1)
|
||||||
temp_y = randint(0, tiles_y - 1)
|
temp_y = randint(0, tiles_y - 1)
|
||||||
path = VacuumRecognizer.get_random_dir(neural_network,'Banana')
|
path = VacuumRecognizer.get_random_dir(neural_network, "Banana")
|
||||||
world_adder(temp_x, temp_y, neural_network.recognize(path))
|
world_adder(temp_x, temp_y, neural_network.recognize(path))
|
||||||
|
|
||||||
|
|
||||||
for x in range(world.width):
|
for x in range(world.width):
|
||||||
for y in range(world.height):
|
for y in range(world.height):
|
||||||
if world.is_garbage_at(x, y):
|
if world.is_garbage_at(x, y):
|
||||||
|
Loading…
Reference in New Issue
Block a user