Machine_learning_2023/domain/world.py
2023-05-19 15:49:17 +02:00

57 lines
1.9 KiB
Python

from decisionTree.evaluate import evaluate
from domain.entities.entity import Entity
class World:
def __init__(self, width: int, height: int) -> object:
self.costs = [[1000 for j in range(height)] for i in range(width)]
self.width = width
self.height = height
self.dust = [[[] for j in range(height)] for i in range(width)]
self.obstacles = [[[] for j in range(height)] for i in range(width)]
self.vacuum = None
self.cat = None
self.doc_station = None
def add_entity(self, entity: Entity):
if entity.type == "PEEL":
self.dust[entity.x][entity.y].append(entity)
elif entity.type == "EARRING":
self.dust[entity.x][entity.y].append(entity)
elif entity.type == "VACUUM":
self.vacuum = entity
elif entity.type == "DOC_STATION":
self.doc_station = entity
elif entity.type == "CAT":
self.cat = entity
self.obstacles[entity.x][entity.y].append(entity)
else:
self.obstacles[entity.x][entity.y].append(entity)
def is_obstacle_at(self, x: int, y: int) -> bool:
return bool(self.obstacles[x][y])
def is_garbage_at(self, x: int, y: int):
if len(self.dust[x][y]) == 0:
return []
return [i for i in self.dust[x][y] if evaluate([i.props])[0] == 1]
def is_docking_station_at(self, x: int, y: int) -> bool:
return bool(self.doc_station.x == x and self.doc_station.y == y)
def accepted_move(self, checking_x, checking_y):
if (
checking_x > self.width - 1
or checking_y > self.height - 1
or checking_x < 0
or checking_y < 0
):
return False
if self.is_obstacle_at(checking_x, checking_y):
return False
return True
def get_cost(self, x, y):
return self.costs[x][y]