/// @ref core /// @file glm/detail/func_common_simd.inl #if GLM_ARCH & GLM_ARCH_SSE2_BIT #include "../simd/common.h" #include <immintrin.h> namespace glm{ namespace detail { template <precision P> struct compute_abs_vector<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_abs(v.data); return result; } }; template <precision P> struct compute_abs_vector<int, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<int, P> call(tvec4<int, P> const & v) { tvec4<int, P> result(uninitialize); result.data = glm_ivec4_abs(v.data); return result; } }; template <precision P> struct compute_floor<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_floor(v.data); return result; } }; template <precision P> struct compute_ceil<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_ceil(v.data); return result; } }; template <precision P> struct compute_fract<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_fract(v.data); return result; } }; template <precision P> struct compute_round<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_round(v.data); return result; } }; template <precision P> struct compute_mod<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & x, tvec4<float, P> const & y) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_mod(x.data, y.data); return result; } }; template <precision P> struct compute_min_vector<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v1, tvec4<float, P> const & v2) { tvec4<float, P> result(uninitialize); result.data = _mm_min_ps(v1.data, v2.data); return result; } }; template <precision P> struct compute_min_vector<int32, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<int32, P> const & v1, tvec4<int32, P> const & v2) { tvec4<int32, P> result(uninitialize); result.data = _mm_min_epi32(v1.data, v2.data); return result; } }; template <precision P> struct compute_min_vector<uint32, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<uint32, P> const & v1, tvec4<uint32, P> const & v2) { tvec4<uint32, P> result(uninitialize); result.data = _mm_min_epu32(v1.data, v2.data); return result; } }; template <precision P> struct compute_max_vector<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v1, tvec4<float, P> const & v2) { tvec4<float, P> result(uninitialize); result.data = _mm_max_ps(v1.data, v2.data); return result; } }; template <precision P> struct compute_max_vector<int32, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<int32, P> const & v1, tvec4<int32, P> const & v2) { tvec4<int32, P> result(uninitialize); result.data = _mm_max_epi32(v1.data, v2.data); return result; } }; template <precision P> struct compute_max_vector<uint32, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<uint32, P> call(tvec4<uint32, P> const & v1, tvec4<uint32, P> const & v2) { tvec4<uint32, P> result(uninitialize); result.data = _mm_max_epu32(v1.data, v2.data); return result; } }; template <precision P> struct compute_clamp_vector<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & x, tvec4<float, P> const & minVal, tvec4<float, P> const & maxVal) { tvec4<float, P> result(uninitialize); result.data = _mm_min_ps(_mm_max_ps(x.data, minVal.data), maxVal.data); return result; } }; template <precision P> struct compute_clamp_vector<int32, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<int32, P> const & x, tvec4<int32, P> const & minVal, tvec4<int32, P> const & maxVal) { tvec4<int32, P> result(uninitialize); result.data = _mm_min_epi32(_mm_max_epi32(x.data, minVal.data), maxVal.data); return result; } }; template <precision P> struct compute_clamp_vector<uint32, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<uint32, P> call(tvec4<uint32, P> const & x, tvec4<uint32, P> const & minVal, tvec4<uint32, P> const & maxVal) { tvec4<uint32, P> result(uninitialize); result.data = _mm_min_epu32(_mm_max_epu32(x.data, minVal.data), maxVal.data); return result; } }; template <precision P> struct compute_mix_vector<float, bool, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & x, tvec4<float, P> const & y, tvec4<bool, P> const & a) { __m128i const Load = _mm_set_epi32(-(int)a.w, -(int)a.z, -(int)a.y, -(int)a.x); __m128 const Mask = _mm_castsi128_ps(Load); tvec4<float, P> Result(uninitialize); # if 0 && GLM_ARCH & GLM_ARCH_AVX Result.data = _mm_blendv_ps(x.data, y.data, Mask); # else Result.data = _mm_or_ps(_mm_and_ps(Mask, y.data), _mm_andnot_ps(Mask, x.data)); # endif return Result; } }; /* FIXME template <precision P> struct compute_step_vector<float, P, tvec4> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const& edge, tvec4<float, P> const& x) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_step(edge.data, x.data); return result; } }; */ template <precision P> struct compute_smoothstep_vector<float, P, tvec4, true> { GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const& edge0, tvec4<float, P> const& edge1, tvec4<float, P> const& x) { tvec4<float, P> result(uninitialize); result.data = glm_vec4_smoothstep(edge0.data, edge1.data, x.data); return result; } }; }//namespace detail }//namespace glm #endif//GLM_ARCH & GLM_ARCH_SSE2_BIT