/// @ref gtx_integer /// @file glm/gtx/integer.inl namespace glm { // pow GLM_FUNC_QUALIFIER int pow(int x, int y) { if(y == 0) return 1; int result = x; for(int i = 1; i < y; ++i) result *= x; return result; } // sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387 GLM_FUNC_QUALIFIER int sqrt(int x) { if(x <= 1) return x; int NextTrial = x >> 1; int CurrentAnswer; do { CurrentAnswer = NextTrial; NextTrial = (NextTrial + x / NextTrial) >> 1; } while(NextTrial < CurrentAnswer); return CurrentAnswer; } // Henry Gordon Dietz: http://aggregate.org/MAGIC/ namespace detail { GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x) { /* 32-bit recursive reduction using SWAR... but first step is mapping 2-bit values into sum of 2 1-bit values in sneaky way */ x -= ((x >> 1) & 0x55555555); x = (((x >> 2) & 0x33333333) + (x & 0x33333333)); x = (((x >> 4) + x) & 0x0f0f0f0f); x += (x >> 8); x += (x >> 16); return(x & 0x0000003f); } }//namespace detail // Henry Gordon Dietz: http://aggregate.org/MAGIC/ /* GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x) { x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return _detail::ones32(x) >> 1; } */ // mod GLM_FUNC_QUALIFIER int mod(int x, int y) { return x - y * (x / y); } // factorial (!12 max, integer only) template <typename genType> GLM_FUNC_QUALIFIER genType factorial(genType const & x) { genType Temp = x; genType Result; for(Result = 1; Temp > 1; --Temp) Result *= Temp; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> factorial( tvec2<T, P> const & x) { return tvec2<T, P>( factorial(x.x), factorial(x.y)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> factorial( tvec3<T, P> const & x) { return tvec3<T, P>( factorial(x.x), factorial(x.y), factorial(x.z)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> factorial( tvec4<T, P> const & x) { return tvec4<T, P>( factorial(x.x), factorial(x.y), factorial(x.z), factorial(x.w)); } GLM_FUNC_QUALIFIER uint pow(uint x, uint y) { uint result = x; for(uint i = 1; i < y; ++i) result *= x; return result; } GLM_FUNC_QUALIFIER uint sqrt(uint x) { if(x <= 1) return x; uint NextTrial = x >> 1; uint CurrentAnswer; do { CurrentAnswer = NextTrial; NextTrial = (NextTrial + x / NextTrial) >> 1; } while(NextTrial < CurrentAnswer); return CurrentAnswer; } GLM_FUNC_QUALIFIER uint mod(uint x, uint y) { return x - y * (x / y); } #if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC)) GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) { return 31u - findMSB(x); } #else // Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) { int y, m, n; y = -int(x >> 16); // If left half of x is 0, m = (y >> 16) & 16; // set n = 16. If left half n = 16 - m; // is nonzero, set n = 0 and x = x >> m; // shift x right 16. // Now x is of the form 0000xxxx. y = x - 0x100; // If positions 8-15 are 0, m = (y >> 16) & 8; // add 8 to n and shift x left 8. n = n + m; x = x << m; y = x - 0x1000; // If positions 12-15 are 0, m = (y >> 16) & 4; // add 4 to n and shift x left 4. n = n + m; x = x << m; y = x - 0x4000; // If positions 14-15 are 0, m = (y >> 16) & 2; // add 2 to n and shift x left 2. n = n + m; x = x << m; y = x >> 14; // Set y = 0, 1, 2, or 3. m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp. return unsigned(n + 2 - m); } #endif//(GLM_COMPILER) }//namespace glm