/// @ref gtx_matrix_decompose /// @file glm/gtx/matrix_decompose.inl namespace glm{ namespace detail { /// Make a linear combination of two vectors and return the result. // result = (a * ascl) + (b * bscl) template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> combine( tvec3<T, P> const & a, tvec3<T, P> const & b, T ascl, T bscl) { return (a * ascl) + (b * bscl); } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> scale(tvec3<T, P> const& v, T desiredLength) { return v * desiredLength / length(v); } }//namespace detail // Matrix decompose // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp // Decomposes the mode matrix to translations,rotation scale components template <typename T, precision P> GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective) { tmat4x4<T, P> LocalMatrix(ModelMatrix); // Normalize the matrix. if(LocalMatrix[3][3] == static_cast<T>(0)) return false; for(length_t i = 0; i < 4; ++i) for(length_t j = 0; j < 4; ++j) LocalMatrix[i][j] /= LocalMatrix[3][3]; // perspectiveMatrix is used to solve for perspective, but it also provides // an easy way to test for singularity of the upper 3x3 component. tmat4x4<T, P> PerspectiveMatrix(LocalMatrix); for(length_t i = 0; i < 3; i++) PerspectiveMatrix[i][3] = static_cast<T>(0); PerspectiveMatrix[3][3] = static_cast<T>(1); /// TODO: Fixme! if(determinant(PerspectiveMatrix) == static_cast<T>(0)) return false; // First, isolate perspective. This is the messiest. if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0)) { // rightHandSide is the right hand side of the equation. tvec4<T, P> RightHandSide; RightHandSide[0] = LocalMatrix[0][3]; RightHandSide[1] = LocalMatrix[1][3]; RightHandSide[2] = LocalMatrix[2][3]; RightHandSide[3] = LocalMatrix[3][3]; // Solve the equation by inverting PerspectiveMatrix and multiplying // rightHandSide by the inverse. (This is the easiest way, not // necessarily the best.) tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix); tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); Perspective = TransposedInversePerspectiveMatrix * RightHandSide; // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); // Clear the perspective partition LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0); LocalMatrix[3][3] = static_cast<T>(1); } else { // No perspective. Perspective = tvec4<T, P>(0, 0, 0, 1); } // Next take care of translation (easy). Translation = tvec3<T, P>(LocalMatrix[3]); LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w); tvec3<T, P> Row[3], Pdum3; // Now get scale and shear. for(length_t i = 0; i < 3; ++i) for(int j = 0; j < 3; ++j) Row[i][j] = LocalMatrix[i][j]; // Compute X scale factor and normalize first row. Scale.x = length(Row[0]);// v3Length(Row[0]); Row[0] = detail::scale(Row[0], static_cast<T>(1)); // Compute XY shear factor and make 2nd row orthogonal to 1st. Skew.z = dot(Row[0], Row[1]); Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z); // Now, compute Y scale and normalize 2nd row. Scale.y = length(Row[1]); Row[1] = detail::scale(Row[1], static_cast<T>(1)); Skew.z /= Scale.y; // Compute XZ and YZ shears, orthogonalize 3rd row. Skew.y = glm::dot(Row[0], Row[2]); Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y); Skew.x = glm::dot(Row[1], Row[2]); Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x); // Next, get Z scale and normalize 3rd row. Scale.z = length(Row[2]); Row[2] = detail::scale(Row[2], static_cast<T>(1)); Skew.y /= Scale.z; Skew.x /= Scale.z; // At this point, the matrix (in rows[]) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); if(dot(Row[0], Pdum3) < 0) { for(length_t i = 0; i < 3; i++) { Scale[i] *= static_cast<T>(-1); Row[i] *= static_cast<T>(-1); } } // Now, get the rotations out, as described in the gem. // FIXME - Add the ability to return either quaternions (which are // easier to recompose with) or Euler angles (rx, ry, rz), which // are easier for authors to deal with. The latter will only be useful // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I // will leave the Euler angle code here for now. // ret.rotateY = asin(-Row[0][2]); // if (cos(ret.rotateY) != 0) { // ret.rotateX = atan2(Row[1][2], Row[2][2]); // ret.rotateZ = atan2(Row[0][1], Row[0][0]); // } else { // ret.rotateX = atan2(-Row[2][0], Row[1][1]); // ret.rotateZ = 0; // } T s, t, x, y, z, w; t = Row[0][0] + Row[1][1] + Row[2][2] + static_cast<T>(1); if(t > static_cast<T>(1e-4)) { s = static_cast<T>(0.5) / sqrt(t); w = static_cast<T>(0.25) / s; x = (Row[2][1] - Row[1][2]) * s; y = (Row[0][2] - Row[2][0]) * s; z = (Row[1][0] - Row[0][1]) * s; } else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) { s = sqrt (static_cast<T>(1) + Row[0][0] - Row[1][1] - Row[2][2]) * static_cast<T>(2); // S=4*qx x = static_cast<T>(0.25) * s; y = (Row[0][1] + Row[1][0]) / s; z = (Row[0][2] + Row[2][0]) / s; w = (Row[2][1] - Row[1][2]) / s; } else if(Row[1][1] > Row[2][2]) { s = sqrt (static_cast<T>(1) + Row[1][1] - Row[0][0] - Row[2][2]) * static_cast<T>(2); // S=4*qy x = (Row[0][1] + Row[1][0]) / s; y = static_cast<T>(0.25) * s; z = (Row[1][2] + Row[2][1]) / s; w = (Row[0][2] - Row[2][0]) / s; } else { s = sqrt(static_cast<T>(1) + Row[2][2] - Row[0][0] - Row[1][1]) * static_cast<T>(2); // S=4*qz x = (Row[0][2] + Row[2][0]) / s; y = (Row[1][2] + Row[2][1]) / s; z = static_cast<T>(0.25) * s; w = (Row[1][0] - Row[0][1]) / s; } Orientation.x = x; Orientation.y = y; Orientation.z = z; Orientation.w = w; return true; } }//namespace glm