/// @ref gtx_simd_quat /// @file glm/gtx/simd_quat.hpp /// /// @see core (dependence) /// /// @defgroup gtx_simd_quat GLM_GTX_simd_quat /// @ingroup gtx /// /// @brief SIMD implementation of quat type. /// /// <glm/gtx/simd_quat.hpp> need to be included to use these functionalities. #pragma once // Dependency: #include "../glm.hpp" #include "../gtc/quaternion.hpp" #include "../gtx/fast_trigonometry.hpp" #if GLM_ARCH != GLM_ARCH_PURE #if GLM_ARCH & GLM_ARCH_SSE2_BIT # include "../gtx/simd_mat4.hpp" #else # error "GLM: GLM_GTX_simd_quat requires compiler support of SSE2 through intrinsics" #endif #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTX_simd_quat extension included") # pragma message("GLM: GLM_GTX_simd_quat extension is deprecated and will be removed in GLM 0.9.9. Use GLM_GTC_quaternion instead and use compiler SIMD arguments.") #endif // Warning silencer for nameless struct/union. #if (GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(push) # pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union #endif namespace glm{ namespace detail { GLM_ALIGNED_STRUCT(16) fquatSIMD { typedef float value_type; typedef std::size_t size_type; typedef fquatSIMD type; typedef tquat<bool, defaultp> bool_type; typedef tquat<float, defaultp> pure_type; #ifdef GLM_SIMD_ENABLE_XYZW_UNION union { __m128 Data; struct {float x, y, z, w;}; }; #else __m128 Data; #endif ////////////////////////////////////// // Implicit basic constructors fquatSIMD() GLM_DEFAULT_CTOR; fquatSIMD(fquatSIMD const & q) GLM_DEFAULT; fquatSIMD(__m128 const & Data); ////////////////////////////////////// // Explicit basic constructors explicit fquatSIMD( ctor); explicit fquatSIMD( float const & w, float const & x, float const & y, float const & z); explicit fquatSIMD( quat const & v); explicit fquatSIMD( vec3 const & eulerAngles); ////////////////////////////////////// // Unary arithmetic operators fquatSIMD& operator= (fquatSIMD const & q) GLM_DEFAULT; fquatSIMD& operator*=(float const & s); fquatSIMD& operator/=(float const & s); }; ////////////////////////////////////// // Arithmetic operators detail::fquatSIMD operator- ( detail::fquatSIMD const & q); detail::fquatSIMD operator+ ( detail::fquatSIMD const & q, detail::fquatSIMD const & p); detail::fquatSIMD operator* ( detail::fquatSIMD const & q, detail::fquatSIMD const & p); detail::fvec4SIMD operator* ( detail::fquatSIMD const & q, detail::fvec4SIMD const & v); detail::fvec4SIMD operator* ( detail::fvec4SIMD const & v, detail::fquatSIMD const & q); detail::fquatSIMD operator* ( detail::fquatSIMD const & q, float s); detail::fquatSIMD operator* ( float s, detail::fquatSIMD const & q); detail::fquatSIMD operator/ ( detail::fquatSIMD const & q, float s); }//namespace detail /// @addtogroup gtx_simd_quat /// @{ typedef glm::detail::fquatSIMD simdQuat; //! Convert a simdQuat to a quat. /// @see gtx_simd_quat quat quat_cast( detail::fquatSIMD const & x); //! Convert a simdMat4 to a simdQuat. /// @see gtx_simd_quat detail::fquatSIMD quatSIMD_cast( detail::fmat4x4SIMD const & m); //! Converts a mat4 to a simdQuat. /// @see gtx_simd_quat template <typename T, precision P> detail::fquatSIMD quatSIMD_cast( tmat4x4<T, P> const & m); //! Converts a mat3 to a simdQuat. /// @see gtx_simd_quat template <typename T, precision P> detail::fquatSIMD quatSIMD_cast( tmat3x3<T, P> const & m); //! Convert a simdQuat to a simdMat4 /// @see gtx_simd_quat detail::fmat4x4SIMD mat4SIMD_cast( detail::fquatSIMD const & q); //! Converts a simdQuat to a standard mat4. /// @see gtx_simd_quat mat4 mat4_cast( detail::fquatSIMD const & q); /// Returns the length of the quaternion. /// /// @see gtx_simd_quat float length( detail::fquatSIMD const & x); /// Returns the normalized quaternion. /// /// @see gtx_simd_quat detail::fquatSIMD normalize( detail::fquatSIMD const & x); /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... /// /// @see gtx_simd_quat float dot( detail::fquatSIMD const & q1, detail::fquatSIMD const & q2); /// Spherical linear interpolation of two quaternions. /// The interpolation is oriented and the rotation is performed at constant speed. /// For short path spherical linear interpolation, use the slerp function. /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. /// @tparam T Value type used to build the quaternion. Supported: half, float or double. /// @see gtx_simd_quat /// @see - slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a) detail::fquatSIMD mix( detail::fquatSIMD const & x, detail::fquatSIMD const & y, float const & a); /// Linear interpolation of two quaternions. /// The interpolation is oriented. /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. /// @tparam T Value type used to build the quaternion. Supported: half, float or double. /// @see gtx_simd_quat detail::fquatSIMD lerp( detail::fquatSIMD const & x, detail::fquatSIMD const & y, float const & a); /// Spherical linear interpolation of two quaternions. /// The interpolation always take the short path and the rotation is performed at constant speed. /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. /// @tparam T Value type used to build the quaternion. Supported: half, float or double. /// @see gtx_simd_quat detail::fquatSIMD slerp( detail::fquatSIMD const & x, detail::fquatSIMD const & y, float const & a); /// Faster spherical linear interpolation of two unit length quaternions. /// /// This is the same as mix(), except for two rules: /// 1) The two quaternions must be unit length. /// 2) The interpolation factor (a) must be in the range [0, 1]. /// /// This will use the equivalent to fastAcos() and fastSin(). /// /// @see gtx_simd_quat /// @see - mix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a) detail::fquatSIMD fastMix( detail::fquatSIMD const & x, detail::fquatSIMD const & y, float const & a); /// Identical to fastMix() except takes the shortest path. /// /// The same rules apply here as those in fastMix(). Both quaternions must be unit length and 'a' must be /// in the range [0, 1]. /// /// @see - fastMix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a) /// @see - slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a) detail::fquatSIMD fastSlerp( detail::fquatSIMD const & x, detail::fquatSIMD const & y, float const & a); /// Returns the q conjugate. /// /// @see gtx_simd_quat detail::fquatSIMD conjugate( detail::fquatSIMD const & q); /// Returns the q inverse. /// /// @see gtx_simd_quat detail::fquatSIMD inverse( detail::fquatSIMD const & q); /// Build a quaternion from an angle and a normalized axis. /// /// @param angle Angle expressed in radians. /// @param axis Axis of the quaternion, must be normalized. /// /// @see gtx_simd_quat detail::fquatSIMD angleAxisSIMD( float const & angle, vec3 const & axis); /// Build a quaternion from an angle and a normalized axis. /// /// @param angle Angle expressed in radians. /// @param x x component of the x-axis, x, y, z must be a normalized axis /// @param y y component of the y-axis, x, y, z must be a normalized axis /// @param z z component of the z-axis, x, y, z must be a normalized axis /// /// @see gtx_simd_quat detail::fquatSIMD angleAxisSIMD( float const & angle, float const & x, float const & y, float const & z); // TODO: Move this to somewhere more appropriate. Used with fastMix() and fastSlerp(). /// Performs the equivalent of glm::fastSin() on each component of the given __m128. __m128 fastSin(__m128 x); /// @} }//namespace glm #include "simd_quat.inl" #if (GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(pop) #endif #endif//(GLM_ARCH != GLM_ARCH_PURE)