Merge remote-tracking branch 'origin/A_star' into A_star
# Conflicts: # bfs.py # main.py # movement.py
This commit is contained in:
commit
aacee0e493
93
bfs.py
93
bfs.py
@ -4,97 +4,67 @@ from city import City
|
|||||||
from gridCellType import GridCellType
|
from gridCellType import GridCellType
|
||||||
from agentActionType import AgentActionType
|
from agentActionType import AgentActionType
|
||||||
from agentOrientation import AgentOrientation
|
from agentOrientation import AgentOrientation
|
||||||
from queue import Queue, PriorityQueue
|
from queue import Queue
|
||||||
from turnCar import turn_left_orientation, turn_right_orientation
|
from turnCar import turn_left_orientation, turn_right_orientation
|
||||||
|
|
||||||
|
|
||||||
class Succ:
|
class Succ:
|
||||||
state: AgentState
|
state: AgentState
|
||||||
action: AgentActionType
|
action: AgentActionType
|
||||||
cost: int
|
##cost: int
|
||||||
predicted_cost: int
|
|
||||||
|
|
||||||
def __init__(self, state: AgentState, action: AgentActionType, cost: int, predicted_cost: int) -> None:
|
def __init__(self, state: AgentState, action: AgentActionType) -> None:
|
||||||
self.state = state
|
self.state = state
|
||||||
self.action = action
|
self.action = action
|
||||||
self.cost = cost
|
##self.cost = cost
|
||||||
self.predicted_cost = cost
|
|
||||||
|
|
||||||
|
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> list[AgentActionType]:
|
||||||
class SuccList:
|
q: Queue[list[Succ]] = Queue()
|
||||||
succ_list: list[Succ]
|
|
||||||
|
|
||||||
def __init__(self, succ_list: list[Succ]) -> None:
|
|
||||||
self.succ_list = succ_list
|
|
||||||
|
|
||||||
def __lt__(self, other):
|
|
||||||
return self.succ_list[-1].predicted_cost < other.succ_list[-1].predicted_cost
|
|
||||||
|
|
||||||
def __gt__(self, other):
|
|
||||||
return self.succ_list[-1].predicted_cost > other.succ_list[-1].predicted_cost
|
|
||||||
|
|
||||||
|
|
||||||
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> list[
|
|
||||||
AgentActionType]:
|
|
||||||
q: PriorityQueue[SuccList] = PriorityQueue()
|
|
||||||
visited: list[AgentState] = []
|
visited: list[AgentState] = []
|
||||||
startStates: SuccList = SuccList(
|
startStates: list[Succ] = [Succ(startState, AgentActionType.UNKNOWN)]
|
||||||
[Succ(startState, AgentActionType.UNKNOWN, 0, _heuristics(startState.position, city))])
|
|
||||||
q.put(startStates)
|
q.put(startStates)
|
||||||
while not q.empty():
|
while not q.empty():
|
||||||
currently_checked = q.get()
|
currently_checked = q.get()
|
||||||
visited.append(currently_checked.succ_list[-1].state)
|
visited.append(currently_checked[-1].state)
|
||||||
if is_state_success(currently_checked.succ_list[-1].state, grid):
|
if is_state_success(currently_checked[-1].state, grid):
|
||||||
return extract_actions(currently_checked)
|
return extract_actions(currently_checked)
|
||||||
successors = succ(currently_checked.succ_list[-1], grid, city)
|
successors = succ(currently_checked[-1].state)
|
||||||
for s in successors:
|
for s in successors:
|
||||||
already_visited = False
|
already_visited = False
|
||||||
for v in visited:
|
for v in visited:
|
||||||
if v.position[0] == s.state.position[0] and v.position[1] == s.state.position[
|
if v.position[0] == s.state.position[0] and v.position[1] == s.state.position[1] and s.state.orientation == v.orientation:
|
||||||
1] and s.state.orientation == v.orientation:
|
|
||||||
already_visited = True
|
already_visited = True
|
||||||
break
|
break
|
||||||
if already_visited:
|
if already_visited:
|
||||||
continue
|
continue
|
||||||
if is_state_valid(s.state, grid):
|
if is_state_valid(s.state, grid):
|
||||||
new_list = currently_checked.succ_list.copy()
|
new_list = currently_checked.copy()
|
||||||
new_list.append(s)
|
new_list.append(s)
|
||||||
q.put(SuccList(new_list))
|
q.put(new_list)
|
||||||
return []
|
return []
|
||||||
|
|
||||||
|
|
||||||
def extract_actions(successors: SuccList) -> list[AgentActionType]:
|
|
||||||
|
def extract_actions(successors: list[Succ]) -> list[AgentActionType]:
|
||||||
output: list[AgentActionType] = []
|
output: list[AgentActionType] = []
|
||||||
for s in successors.succ_list:
|
for s in successors:
|
||||||
if s.action != AgentActionType.UNKNOWN:
|
if s.action != AgentActionType.UNKNOWN:
|
||||||
output.append(s.action)
|
output.append(s.action)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
def succ(state: AgentState) -> list[Succ]:
|
||||||
def succ(succ: Succ, grid: Dict[Tuple[int, int], GridCellType], city: City) -> list[Succ]:
|
|
||||||
result: list[Succ] = []
|
result: list[Succ] = []
|
||||||
turn_left_cost = 1 + succ.cost
|
result.append(Succ(AgentState(state.position, turn_left_orientation(state.orientation)), AgentActionType.TURN_LEFT))
|
||||||
result.append(
|
result.append(Succ(AgentState(state.position, turn_right_orientation(state.orientation)), AgentActionType.TURN_RIGHT))
|
||||||
Succ(AgentState(succ.state.position, turn_left_orientation(succ.state.orientation)), AgentActionType.TURN_LEFT,
|
state_succ = move_forward_succ(state)
|
||||||
turn_left_cost, turn_left_cost + _heuristics(succ.state.position, city)))
|
|
||||||
turn_right_cost = 1 + succ.cost
|
|
||||||
result.append(Succ(AgentState(succ.state.position, turn_right_orientation(succ.state.orientation)),
|
|
||||||
AgentActionType.TURN_RIGHT, turn_right_cost,
|
|
||||||
turn_right_cost + _heuristics(succ.state.position, city)))
|
|
||||||
state_succ = move_forward_succ(succ, city, grid)
|
|
||||||
if state_succ != None:
|
if state_succ != None:
|
||||||
result.append(state_succ)
|
result.append(move_forward_succ(state))
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def move_forward_succ(state: AgentState) -> Succ:
|
||||||
def move_forward_succ(succ: Succ, city: City, grid: Dict[Tuple[int, int], GridCellType]) -> Succ:
|
position = get_next_cell(state)
|
||||||
position = get_next_cell(succ.state)
|
|
||||||
if position == None:
|
if position == None:
|
||||||
return None
|
return None
|
||||||
|
return Succ(AgentState(position, state.orientation), AgentActionType.MOVE_FORWARD)
|
||||||
cost = get_cost_for_action(AgentActionType.MOVE_FORWARD, grid[position]) + succ.cost
|
|
||||||
return Succ(AgentState(position, succ.state.orientation), AgentActionType.MOVE_FORWARD, cost,
|
|
||||||
cost + _heuristics(position, city))
|
|
||||||
|
|
||||||
|
|
||||||
def get_next_cell(state: AgentState) -> Tuple[int, int]:
|
def get_next_cell(state: AgentState) -> Tuple[int, int]:
|
||||||
@ -114,7 +84,6 @@ def get_next_cell(state: AgentState) -> Tuple[int, int]:
|
|||||||
return None
|
return None
|
||||||
return (state.position[0] + 1, state.position[1])
|
return (state.position[0] + 1, state.position[1])
|
||||||
|
|
||||||
|
|
||||||
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
|
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
|
||||||
next_cell = get_next_cell(state)
|
next_cell = get_next_cell(state)
|
||||||
try:
|
try:
|
||||||
@ -122,7 +91,6 @@ def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType
|
|||||||
except:
|
except:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int:
|
def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int:
|
||||||
if action == AgentActionType.TURN_LEFT or action == AgentActionType.TURN_RIGHT:
|
if action == AgentActionType.TURN_LEFT or action == AgentActionType.TURN_RIGHT:
|
||||||
return 1
|
return 1
|
||||||
@ -134,13 +102,11 @@ def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int
|
|||||||
|
|
||||||
|
|
||||||
def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
|
def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
|
||||||
try:
|
try:
|
||||||
return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[
|
return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[state.position] == GridCellType.STREET_VERTICAL or grid[state.position] == GridCellType.SPEED_BUMP
|
||||||
state.position] == GridCellType.STREET_VERTICAL or grid[state.position] == GridCellType.SPEED_BUMP
|
|
||||||
except:
|
except:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def _heuristics(position: Tuple[int, int], city: City):
|
def _heuristics(position: Tuple[int, int], city: City):
|
||||||
min_distance: int = 300
|
min_distance: int = 300
|
||||||
found_nonvisited: bool = False
|
found_nonvisited: bool = False
|
||||||
@ -153,4 +119,5 @@ def _heuristics(position: Tuple[int, int], city: City):
|
|||||||
min_distance = distance
|
min_distance = distance
|
||||||
if found_nonvisited:
|
if found_nonvisited:
|
||||||
return min_distance
|
return min_distance
|
||||||
return -1
|
return -1
|
||||||
|
|
2
city.py
2
city.py
@ -41,4 +41,4 @@ class City:
|
|||||||
|
|
||||||
def _render_bumps(self, game_context: GameContext) -> None:
|
def _render_bumps(self, game_context: GameContext) -> None:
|
||||||
for bump in self.bumps:
|
for bump in self.bumps:
|
||||||
bump.render(game_context)
|
bump.render(game_context)
|
||||||
|
3
main.py
3
main.py
@ -1,6 +1,4 @@
|
|||||||
import pygame
|
import pygame
|
||||||
|
|
||||||
from city import City
|
|
||||||
from gameEventHandler import handle_game_event
|
from gameEventHandler import handle_game_event
|
||||||
from gameContext import GameContext
|
from gameContext import GameContext
|
||||||
from startup import startup
|
from startup import startup
|
||||||
@ -19,7 +17,6 @@ game_context = GameContext()
|
|||||||
game_context.dust_car_pil = dust_car_pil
|
game_context.dust_car_pil = dust_car_pil
|
||||||
game_context.dust_car_pygame = pygame.image.frombuffer(dust_car_pil.tobytes(), dust_car_pil.size, 'RGB')
|
game_context.dust_car_pygame = pygame.image.frombuffer(dust_car_pil.tobytes(), dust_car_pil.size, 'RGB')
|
||||||
game_context.canvas = canvas
|
game_context.canvas = canvas
|
||||||
|
|
||||||
startup(game_context)
|
startup(game_context)
|
||||||
collect_garbage(game_context)
|
collect_garbage(game_context)
|
||||||
|
|
||||||
|
@ -10,11 +10,10 @@ import pygame
|
|||||||
from bfs import find_path_to_nearest_can
|
from bfs import find_path_to_nearest_can
|
||||||
from agentState import AgentState
|
from agentState import AgentState
|
||||||
|
|
||||||
|
|
||||||
def collect_garbage(game_context: GameContext) -> None:
|
def collect_garbage(game_context: GameContext) -> None:
|
||||||
while True:
|
while True:
|
||||||
start_agent_state = AgentState(game_context.dust_car.position, game_context.dust_car.orientation)
|
start_agent_state = AgentState(game_context.dust_car.position, game_context.dust_car.orientation)
|
||||||
path = find_path_to_nearest_can(start_agent_state, game_context.grid, game_context.city)
|
path = find_path_to_nearest_can(start_agent_state, game_context.grid)
|
||||||
if path == None or len(path) == 0:
|
if path == None or len(path) == 0:
|
||||||
break
|
break
|
||||||
move_dust_car(path, game_context)
|
move_dust_car(path, game_context)
|
||||||
@ -23,7 +22,6 @@ def collect_garbage(game_context: GameContext) -> None:
|
|||||||
game_context.city.cans_dict[next_position].is_visited = True
|
game_context.city.cans_dict[next_position].is_visited = True
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def move_dust_car(actions: list[AgentActionType], game_context: GameContext) -> None:
|
def move_dust_car(actions: list[AgentActionType], game_context: GameContext) -> None:
|
||||||
for action in actions:
|
for action in actions:
|
||||||
street_position = game_context.dust_car.position
|
street_position = game_context.dust_car.position
|
||||||
@ -46,6 +44,7 @@ def move_dust_car(actions: list[AgentActionType], game_context: GameContext) ->
|
|||||||
pygame.display.update()
|
pygame.display.update()
|
||||||
time.sleep(0.15)
|
time.sleep(0.15)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_next_position(car: GarbageTruck) -> Tuple[int, int]:
|
def calculate_next_position(car: GarbageTruck) -> Tuple[int, int]:
|
||||||
if car.orientation == AgentOrientation.UP:
|
if car.orientation == AgentOrientation.UP:
|
||||||
|
Loading…
Reference in New Issue
Block a user