add neuron netowrk learning
This commit is contained in:
parent
e208831d80
commit
e4cd4e727c
BIN
machine_learning/model.pt
Normal file
BIN
machine_learning/model.pt
Normal file
Binary file not shown.
71
machine_learning/neuron_network.py
Normal file
71
machine_learning/neuron_network.py
Normal file
@ -0,0 +1,71 @@
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 16, 3)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.conv2 = nn.Conv2d(16, 32, 3)
|
||||
self.fc1 = nn.Linear(32 * 14 * 14, 128)
|
||||
self.fc2 = nn.Linear(128, 5)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(torch.relu(self.conv1(x)))
|
||||
x = self.pool(torch.relu(self.conv2(x)))
|
||||
x = x.view(-1, 32 * 14 * 14)
|
||||
x = torch.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
def main() -> None:
|
||||
transform = transforms.Compose([
|
||||
transforms.Resize((64, 64)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
||||
])
|
||||
|
||||
path = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||||
path = os.path.join(path, 'garbage_photos/train_set')
|
||||
trainset = torchvision.datasets.ImageFolder(root=path, transform=transform)
|
||||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2)
|
||||
|
||||
net = Net()
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
net.to(device)
|
||||
|
||||
for epoch in range(10):
|
||||
running_loss = 0.0
|
||||
for i, data in enumerate(trainloader, 0):
|
||||
inputs, labels = data[0].to(device), data[1].to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
if i % 200 == 199:
|
||||
print(f'Epoch: {epoch + 1}, Batch: {i + 1}, Loss: {running_loss / 200:.3f}')
|
||||
running_loss = 0.0
|
||||
|
||||
torch.save({
|
||||
'model_state_dict': net.state_dict(),
|
||||
'optimizer_state_dict': optimizer.state_dict(),
|
||||
'epoch': epoch,
|
||||
'loss': loss,
|
||||
}, 'model.pt')
|
||||
|
||||
print("Uczenie zakończone.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user