implement bfs algorythm

This commit is contained in:
Pawel Felcyn 2023-04-22 16:16:36 +02:00
parent 7ef1ccb0a3
commit f12eb5ba0d
2 changed files with 101 additions and 0 deletions

7
agentOrientation.py Normal file
View File

@ -0,0 +1,7 @@
from enum import Enum
class AgentOrientation (Enum):
UP = 0
RIGHT = 1
DOWN = 2
LEFT = 3

94
bfs.py Normal file
View File

@ -0,0 +1,94 @@
from agentState import AgentState
from typing import Dict, Tuple
from gridCellType import GridCellType
from agentActionType import AgentActionType
from agentOrientation import AgentOrientation
from queue import Queue
class Succ:
state: AgentState
action: AgentActionType
def __init__(self, state: AgentState, action: AgentActionType) -> None:
self.state = state
self.action = action
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> list[AgentActionType]:
q: Queue[list[Succ]] = Queue()
visited: list[Tuple[int, int]] = []
startStates: list[Succ] = [Succ(startState, AgentActionType.UNKNOWN)]
q.put(startStates)
while not q.empty():
currently_checked = q.get()
visited.append(currently_checked[-1].state.position)
if is_state_success(currently_checked[-1].state, grid):
return extract_actions(currently_checked)
successors = succ(currently_checked[-1].state)
for s in successors:
already_visited = False
for v in visited:
if v[0] == s.state.position[0] and v[1] == s.state.position[1]:
already_visited = True
break
if already_visited:
continue
if is_state_valid(s.state, grid):
new_list = currently_checked.copy()
new_list.append(s)
q.put(new_list)
return []
def extract_actions(successors: list[Succ]) -> list[AgentActionType]:
output: list[AgentActionType] = []
for s in successors:
if s.action != AgentActionType.UNKNOWN:
output.append(s.action)
return output
def succ(state: AgentState) -> list[Succ]:
result: list[Succ] = []
result.append(Succ(AgentState(state.position, turn_left_orientation(state.orientation)), AgentActionType.TURN_LEFT))
result.append(Succ(AgentState(state.position, turn_right_orientation(state.orientation)), AgentActionType.TURN_RIGHT))
state_succ = move_forward_succ(state)
if state_succ != None:
result.append(move_forward_succ(state))
return result
def turn_left_orientation(orientation: AgentOrientation) -> AgentOrientation:
return (orientation - 1) % 4
def turn_right_orientation(orientation: AgentOrientation) -> AgentOrientation:
return (orientation + 1) % 4
def move_forward_succ(state: AgentState) -> Succ:
position = get_next_cell(state)
if position == None:
return None
return Succ(AgentState(position, state.orientation), AgentActionType.MOVE_FORWARD)
def get_next_cell(state: AgentState) -> Tuple[int, int]:
if state.orientation == AgentOrientation.UP:
if state.position[1] - 1 < 1:
return None
return (state.position[0], state.position[1] - 1)
if state.orientation == AgentOrientation.DOWN:
if state.position[1] + 1 > 27:
return None
return (state.position[0], state.position[1] + 1)
if state.orientation == AgentOrientation.LEFT:
if state.position[0] - 1 < 1:
return None
return (state.position[0] - 1, state.position[1])
if state.position[0] + 1 > 27:
return None
return (state.position[0] + 1, state.position[1])
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
next_cell = get_next_cell(state)
return grid[next_cell] == GridCellType.GARBAGE_CAN
def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[state.position] == GridCellType.STREET_VERTICAL