Compare commits

..

No commits in common. "271e3365f9e7406c446fee7600f1861cbbe4577d" and "5440626353e83c9d80f090f75c3556caf644da1c" have entirely different histories.

5 changed files with 79 additions and 101 deletions

View File

@ -7,4 +7,4 @@ class AgentState:
def __init__(self, position: Tuple[int, int], orientation: AgentOrientation) -> None:
self.orientation = orientation
self.position = position
self.position = position

149
bfs.py
View File

@ -1,128 +1,100 @@
from agentState import AgentState
from typing import Dict, Tuple, List
from typing import Dict, Tuple, List, Set
from city import City
from gridCellType import GridCellType
from agentActionType import AgentActionType
from agentOrientation import AgentOrientation
from queue import Queue, PriorityQueue
from queue import PriorityQueue
from turnCar import turn_left_orientation, turn_right_orientation
import heapq
class Successor:
class Succ:
state: AgentState
action: AgentActionType
cost: int
def __init__(self, state: AgentState, action: AgentActionType, cost: int, predicted_cost: int) -> None:
def __init__(self, state: AgentState, action: AgentActionType, cost: int) -> None:
self.state = state
self.action = action
self.cost = cost
self.predicted_cost = cost
class SuccessorList:
succ_list: list[Successor]
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> list[AgentActionType]:
pq: PriorityQueue[Tuple[int, List[Succ]]] = PriorityQueue()
visited: set[AgentState] = set()
startStates: list[Succ] = [Succ(startState, AgentActionType.UNKNOWN, 0)]
pq.put((0, startStates))
def __init__(self, succ_list: list[Successor]) -> None:
self.succ_list = succ_list
while not pq.empty():
_, currently_checked = pq.get()
last_state = currently_checked[-1].state
if last_state in visited:
continue
visited.add(last_state)
def __gt__(self, other):
return self.succ_list[-1].predicted_cost > other.succ_list[-1].predicted_cost
if is_state_success(last_state, grid):
return extract_actions(currently_checked)
def __lt__(self, other):
return self.succ_list[-1].predicted_cost < other.succ_list[-1].predicted_cost
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[
AgentActionType]:
visited: List[AgentState] = []
queue: PriorityQueue[SuccessorList] = PriorityQueue()
queue.put(SuccessorList([Successor(startState, AgentActionType.UNKNOWN, 0, _heuristics(startState.position, city))]))
while not queue.empty():
current = queue.get()
previous = current.succ_list[-1]
visited.append(previous.state)
if is_state_success(previous.state, grid):
return extract_actions(current)
successors = get_successors(previous, grid, city)
successors = succ(last_state)
for s in successors:
already_visited = False
for v in visited:
if v.position == s.state.position and v.orientation == s.state.orientation:
already_visited = True
break
if already_visited:
if s.state in visited:
continue
if is_state_valid(s.state, grid):
new_list = current.succ_list.copy()
new_list.append(s)
queue.put(SuccessorList(new_list))
if not is_state_valid(s.state, grid):
continue
g_cost = currently_checked[-1].cost + get_cost_for_action(s.action, grid.get(s.state.position, GridCellType.STREET_HORIZONTAL))
h_cost = _heuristics(s.state.position, city)
f_cost = g_cost + h_cost
new_list = currently_checked.copy()
new_list.append(s)
pq.put((f_cost, new_list))
return []
def extract_actions(successors: SuccessorList) -> list[AgentActionType]:
def extract_actions(successors: list[Succ]) -> list[AgentActionType]:
output: list[AgentActionType] = []
for s in successors.succ_list:
for s in successors:
if s.action != AgentActionType.UNKNOWN:
output.append(s.action)
return output
def get_successors(succ: Successor, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[Successor]:
result: List[Successor] = []
turn_left_cost = 1 + succ.cost
turn_left_state = AgentState(succ.state.position, turn_left_orientation(succ.state.orientation))
turn_left_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_left_state, AgentActionType.TURN_LEFT, turn_left_cost, turn_left_cost + turn_left_heuristics))
turn_right_cost = 1 + succ.cost
turn_right_state = AgentState(succ.state.position, turn_right_orientation(succ.state.orientation))
turn_right_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_right_state, AgentActionType.TURN_RIGHT, turn_right_cost,
turn_right_cost + turn_right_heuristics))
state_succ = move_forward_succ(succ, city, grid)
def succ(state: AgentState) -> list[Succ]:
result: list[Succ] = []
result.append(Succ(AgentState(state.position, turn_left_orientation(state.orientation)), AgentActionType.TURN_LEFT, 0))
result.append(Succ(AgentState(state.position, turn_right_orientation(state.orientation)), AgentActionType.TURN_RIGHT, 0))
state_succ = move_forward_succ(state)
if state_succ is not None:
result.append(state_succ)
result.append(Succ(state_succ.state, AgentActionType.MOVE_FORWARD, state_succ.cost))
return result
def move_forward_succ(succ: Successor, city: City, grid: Dict[Tuple[int, int], GridCellType]) -> Successor:
position = get_next_cell(succ.state)
def move_forward_succ(state: AgentState) -> Succ:
position = get_next_cell(state)
if position is None:
return None
cost = get_cost_for_action(AgentActionType.MOVE_FORWARD, grid[position]) + succ.cost
predicted_cost = cost + _heuristics(position, city)
new_state = AgentState(position, succ.state.orientation)
return Successor(new_state, AgentActionType.MOVE_FORWARD, cost, predicted_cost)
return Succ(AgentState(position, state.orientation), AgentActionType.MOVE_FORWARD,
get_cost_for_action(AgentActionType.MOVE_FORWARD, GridCellType.STREET_HORIZONTAL))
def get_next_cell(state: AgentState) -> Tuple[int, int]:
x, y = state.position
orientation = state.orientation
if orientation == AgentOrientation.UP:
if y - 1 < 1:
if state.orientation == AgentOrientation.UP:
if state.position[1] - 1 < 1:
return None
return x, y - 1
elif orientation == AgentOrientation.DOWN:
if y + 1 > 27:
return (state.position[0], state.position[1] - 1)
if state.orientation == AgentOrientation.DOWN:
if state.position[1] + 1 > 27:
return None
return x, y + 1
elif orientation == AgentOrientation.LEFT:
if x - 1 < 1:
return (state.position[0], state.position[1] + 1)
if state.orientation == AgentOrientation.LEFT:
if state.position[0] - 1 < 1:
return None
return x - 1, y
elif x + 1 > 27:
return (state.position[0] - 1, state.position[1])
if state.position[0] + 1 > 27:
return None
else:
return x + 1, y
return (state.position[0] + 1, state.position[1])
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
@ -134,10 +106,11 @@ def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType
def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int:
if action in [AgentActionType.TURN_LEFT, AgentActionType.TURN_RIGHT]:
if action == AgentActionType.TURN_LEFT or action == AgentActionType.TURN_RIGHT:
return 1
if cell_type == GridCellType.SPEED_BUMP and action == AgentActionType.MOVE_FORWARD:
return 10
if cell_type == GridCellType.SPEED_BUMP:
if action == AgentActionType.MOVE_FORWARD:
return 10
if action == AgentActionType.MOVE_FORWARD:
return 3
@ -150,7 +123,7 @@ def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType])
return False
def _heuristics(position: Tuple[int, int], city: City):
def _heuristics(position: Tuple[int, int], city: City) -> int:
min_distance: int = 300
found_nonvisited: bool = False
for can in city.cans:
@ -163,3 +136,5 @@ def _heuristics(position: Tuple[int, int], city: City):
if found_nonvisited:
return min_distance
return -1

View File

@ -12,12 +12,12 @@ class City:
cans_dict: Dict[Tuple[int, int], GarbageCan] = {}
def __init__(self) -> None:
self.cans = []
self.nodes = []
self.streets = []
self.bumps = []
def add_can(self, can: GarbageCan) -> None:
self.cans.append(can)
self.nodes.append(can)
self.cans_dict[can.position] = can
def add_street(self, street: Street) -> None:
@ -36,9 +36,9 @@ class City:
street.render(game_context)
def _render_nodes(self, game_context: GameContext) -> None:
for node in self.cans:
for node in self.nodes:
node.render(game_context)
def _render_bumps(self, game_context: GameContext) -> None:
for bump in self.bumps:
bump.render(game_context)
bump.render(game_context)

View File

@ -1,4 +1,6 @@
import pygame
from city import City
from gameEventHandler import handle_game_event
from gameContext import GameContext
from startup import startup
@ -17,8 +19,11 @@ game_context = GameContext()
game_context.dust_car_pil = dust_car_pil
game_context.dust_car_pygame = pygame.image.frombuffer(dust_car_pil.tobytes(), dust_car_pil.size, 'RGB')
game_context.canvas = canvas
city = City()
startup(game_context)
collect_garbage(game_context)
collect_garbage(game_context, city)
exit = False

View File

@ -9,18 +9,18 @@ from agentOrientation import AgentOrientation
import pygame
from bfs import find_path_to_nearest_can
from agentState import AgentState
from city import City
def collect_garbage(game_context: GameContext) -> None:
def collect_garbage(game_context: GameContext, city: City) -> None:
while True:
start_agent_state = AgentState(game_context.dust_car.position, game_context.dust_car.orientation)
path = find_path_to_nearest_can(start_agent_state, game_context.grid, game_context.city)
if path == None or len(path) == 0:
path = find_path_to_nearest_can(start_agent_state, game_context.grid, city)
if path is None or len(path) == 0:
break
move_dust_car(path, game_context)
next_position = calculate_next_position(game_context.dust_car)
game_context.grid[next_position] = GridCellType.VISITED_GARBAGE_CAN
game_context.city.cans_dict[next_position].is_visited = True
pass
@ -41,10 +41,8 @@ def move_dust_car(actions: list[AgentActionType], game_context: GameContext) ->
game_context.render_in_cell(street_position, "imgs/street_horizontal.png")
elif game_context.grid[street_position] == GridCellType.STREET_VERTICAL:
game_context.render_in_cell(street_position, "imgs/street_vertical.png")
elif game_context.grid[street_position] == GridCellType.SPEED_BUMP:
game_context.render_in_cell(street_position, "imgs/speed_bump.png")
pygame.display.update()
time.sleep(0.15)
time.sleep(0.5)
def calculate_next_position(car: GarbageTruck) -> Tuple[int, int]:
@ -62,4 +60,4 @@ def calculate_next_position(car: GarbageTruck) -> Tuple[int, int]:
return (car.position[0] - 1, car.position[1])
if car.position[0] + 1 > 27:
return None
return (car.position[0] + 1, car.position[1])
return (car.position[0] + 1, car.position[1])