Compare commits

..

5 Commits

Author SHA1 Message Date
majkellll
271e3365f9 A* gawor done 2023-05-25 18:18:11 +02:00
majkellll
aacee0e493 Merge remote-tracking branch 'origin/A_star' into A_star
# Conflicts:
#	bfs.py
#	main.py
#	movement.py
2023-05-15 11:50:30 +02:00
majkellll
15638862d3 A* working ok 2023-05-15 11:49:58 +02:00
majkellll
af32df4474 dodany A* - coś jeszcze nie działa 2023-05-15 11:04:09 +02:00
Pawel Felcyn
311a2d0757 astar for MIkołaj Gawor 2023-05-15 10:59:30 +02:00
5 changed files with 101 additions and 79 deletions

145
bfs.py
View File

@ -1,100 +1,128 @@
from agentState import AgentState
from typing import Dict, Tuple, List, Set
from typing import Dict, Tuple, List
from city import City
from gridCellType import GridCellType
from agentActionType import AgentActionType
from agentOrientation import AgentOrientation
from queue import PriorityQueue
from queue import Queue, PriorityQueue
from turnCar import turn_left_orientation, turn_right_orientation
import heapq
class Succ:
state: AgentState
action: AgentActionType
cost: int
class Successor:
def __init__(self, state: AgentState, action: AgentActionType, cost: int) -> None:
def __init__(self, state: AgentState, action: AgentActionType, cost: int, predicted_cost: int) -> None:
self.state = state
self.action = action
self.cost = cost
self.predicted_cost = cost
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> list[AgentActionType]:
pq: PriorityQueue[Tuple[int, List[Succ]]] = PriorityQueue()
visited: set[AgentState] = set()
startStates: list[Succ] = [Succ(startState, AgentActionType.UNKNOWN, 0)]
pq.put((0, startStates))
class SuccessorList:
succ_list: list[Successor]
while not pq.empty():
_, currently_checked = pq.get()
last_state = currently_checked[-1].state
if last_state in visited:
continue
visited.add(last_state)
def __init__(self, succ_list: list[Successor]) -> None:
self.succ_list = succ_list
if is_state_success(last_state, grid):
return extract_actions(currently_checked)
def __gt__(self, other):
return self.succ_list[-1].predicted_cost > other.succ_list[-1].predicted_cost
successors = succ(last_state)
def __lt__(self, other):
return self.succ_list[-1].predicted_cost < other.succ_list[-1].predicted_cost
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[
AgentActionType]:
visited: List[AgentState] = []
queue: PriorityQueue[SuccessorList] = PriorityQueue()
queue.put(SuccessorList([Successor(startState, AgentActionType.UNKNOWN, 0, _heuristics(startState.position, city))]))
while not queue.empty():
current = queue.get()
previous = current.succ_list[-1]
visited.append(previous.state)
if is_state_success(previous.state, grid):
return extract_actions(current)
successors = get_successors(previous, grid, city)
for s in successors:
if s.state in visited:
already_visited = False
for v in visited:
if v.position == s.state.position and v.orientation == s.state.orientation:
already_visited = True
break
if already_visited:
continue
if not is_state_valid(s.state, grid):
continue
g_cost = currently_checked[-1].cost + get_cost_for_action(s.action, grid.get(s.state.position, GridCellType.STREET_HORIZONTAL))
h_cost = _heuristics(s.state.position, city)
f_cost = g_cost + h_cost
new_list = currently_checked.copy()
if is_state_valid(s.state, grid):
new_list = current.succ_list.copy()
new_list.append(s)
pq.put((f_cost, new_list))
queue.put(SuccessorList(new_list))
return []
def extract_actions(successors: list[Succ]) -> list[AgentActionType]:
def extract_actions(successors: SuccessorList) -> list[AgentActionType]:
output: list[AgentActionType] = []
for s in successors:
for s in successors.succ_list:
if s.action != AgentActionType.UNKNOWN:
output.append(s.action)
return output
def succ(state: AgentState) -> list[Succ]:
result: list[Succ] = []
result.append(Succ(AgentState(state.position, turn_left_orientation(state.orientation)), AgentActionType.TURN_LEFT, 0))
result.append(Succ(AgentState(state.position, turn_right_orientation(state.orientation)), AgentActionType.TURN_RIGHT, 0))
state_succ = move_forward_succ(state)
def get_successors(succ: Successor, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[Successor]:
result: List[Successor] = []
turn_left_cost = 1 + succ.cost
turn_left_state = AgentState(succ.state.position, turn_left_orientation(succ.state.orientation))
turn_left_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_left_state, AgentActionType.TURN_LEFT, turn_left_cost, turn_left_cost + turn_left_heuristics))
turn_right_cost = 1 + succ.cost
turn_right_state = AgentState(succ.state.position, turn_right_orientation(succ.state.orientation))
turn_right_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_right_state, AgentActionType.TURN_RIGHT, turn_right_cost,
turn_right_cost + turn_right_heuristics))
state_succ = move_forward_succ(succ, city, grid)
if state_succ is not None:
result.append(Succ(state_succ.state, AgentActionType.MOVE_FORWARD, state_succ.cost))
result.append(state_succ)
return result
def move_forward_succ(state: AgentState) -> Succ:
position = get_next_cell(state)
def move_forward_succ(succ: Successor, city: City, grid: Dict[Tuple[int, int], GridCellType]) -> Successor:
position = get_next_cell(succ.state)
if position is None:
return None
return Succ(AgentState(position, state.orientation), AgentActionType.MOVE_FORWARD,
get_cost_for_action(AgentActionType.MOVE_FORWARD, GridCellType.STREET_HORIZONTAL))
cost = get_cost_for_action(AgentActionType.MOVE_FORWARD, grid[position]) + succ.cost
predicted_cost = cost + _heuristics(position, city)
new_state = AgentState(position, succ.state.orientation)
return Successor(new_state, AgentActionType.MOVE_FORWARD, cost, predicted_cost)
def get_next_cell(state: AgentState) -> Tuple[int, int]:
if state.orientation == AgentOrientation.UP:
if state.position[1] - 1 < 1:
x, y = state.position
orientation = state.orientation
if orientation == AgentOrientation.UP:
if y - 1 < 1:
return None
return (state.position[0], state.position[1] - 1)
if state.orientation == AgentOrientation.DOWN:
if state.position[1] + 1 > 27:
return x, y - 1
elif orientation == AgentOrientation.DOWN:
if y + 1 > 27:
return None
return (state.position[0], state.position[1] + 1)
if state.orientation == AgentOrientation.LEFT:
if state.position[0] - 1 < 1:
return x, y + 1
elif orientation == AgentOrientation.LEFT:
if x - 1 < 1:
return None
return (state.position[0] - 1, state.position[1])
if state.position[0] + 1 > 27:
return x - 1, y
elif x + 1 > 27:
return None
return (state.position[0] + 1, state.position[1])
else:
return x + 1, y
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
@ -106,10 +134,9 @@ def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType
def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int:
if action == AgentActionType.TURN_LEFT or action == AgentActionType.TURN_RIGHT:
if action in [AgentActionType.TURN_LEFT, AgentActionType.TURN_RIGHT]:
return 1
if cell_type == GridCellType.SPEED_BUMP:
if action == AgentActionType.MOVE_FORWARD:
if cell_type == GridCellType.SPEED_BUMP and action == AgentActionType.MOVE_FORWARD:
return 10
if action == AgentActionType.MOVE_FORWARD:
return 3
@ -123,7 +150,7 @@ def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType])
return False
def _heuristics(position: Tuple[int, int], city: City) -> int:
def _heuristics(position: Tuple[int, int], city: City):
min_distance: int = 300
found_nonvisited: bool = False
for can in city.cans:
@ -136,5 +163,3 @@ def _heuristics(position: Tuple[int, int], city: City) -> int:
if found_nonvisited:
return min_distance
return -1

View File

@ -12,12 +12,12 @@ class City:
cans_dict: Dict[Tuple[int, int], GarbageCan] = {}
def __init__(self) -> None:
self.nodes = []
self.cans = []
self.streets = []
self.bumps = []
def add_can(self, can: GarbageCan) -> None:
self.nodes.append(can)
self.cans.append(can)
self.cans_dict[can.position] = can
def add_street(self, street: Street) -> None:
@ -36,7 +36,7 @@ class City:
street.render(game_context)
def _render_nodes(self, game_context: GameContext) -> None:
for node in self.nodes:
for node in self.cans:
node.render(game_context)
def _render_bumps(self, game_context: GameContext) -> None:

View File

@ -1,6 +1,4 @@
import pygame
from city import City
from gameEventHandler import handle_game_event
from gameContext import GameContext
from startup import startup
@ -19,11 +17,8 @@ game_context = GameContext()
game_context.dust_car_pil = dust_car_pil
game_context.dust_car_pygame = pygame.image.frombuffer(dust_car_pil.tobytes(), dust_car_pil.size, 'RGB')
game_context.canvas = canvas
city = City()
startup(game_context)
collect_garbage(game_context, city)
collect_garbage(game_context)
exit = False

View File

@ -9,18 +9,18 @@ from agentOrientation import AgentOrientation
import pygame
from bfs import find_path_to_nearest_can
from agentState import AgentState
from city import City
def collect_garbage(game_context: GameContext, city: City) -> None:
def collect_garbage(game_context: GameContext) -> None:
while True:
start_agent_state = AgentState(game_context.dust_car.position, game_context.dust_car.orientation)
path = find_path_to_nearest_can(start_agent_state, game_context.grid, city)
if path is None or len(path) == 0:
path = find_path_to_nearest_can(start_agent_state, game_context.grid, game_context.city)
if path == None or len(path) == 0:
break
move_dust_car(path, game_context)
next_position = calculate_next_position(game_context.dust_car)
game_context.grid[next_position] = GridCellType.VISITED_GARBAGE_CAN
game_context.city.cans_dict[next_position].is_visited = True
pass
@ -41,8 +41,10 @@ def move_dust_car(actions: list[AgentActionType], game_context: GameContext) ->
game_context.render_in_cell(street_position, "imgs/street_horizontal.png")
elif game_context.grid[street_position] == GridCellType.STREET_VERTICAL:
game_context.render_in_cell(street_position, "imgs/street_vertical.png")
elif game_context.grid[street_position] == GridCellType.SPEED_BUMP:
game_context.render_in_cell(street_position, "imgs/speed_bump.png")
pygame.display.update()
time.sleep(0.5)
time.sleep(0.15)
def calculate_next_position(car: GarbageTruck) -> Tuple[int, int]: