collecting_garbage #32
@ -18,10 +18,10 @@ def _read_training_data() -> TrainingData:
|
||||
line_attributes = values[:-1]
|
||||
line_class = values[-1]
|
||||
attributes.append(line_attributes)
|
||||
classes.append(line_class)
|
||||
classes.append(line_class.strip())
|
||||
return TrainingData(attributes, classes)
|
||||
|
||||
def attributes_to_floats(attributes: list[str]) -> list[float]:
|
||||
def _attributes_to_floats(attributes: list[str]) -> list[float]:
|
||||
output: list[float] = []
|
||||
if attributes[0] == 'Longitiudonal':
|
||||
output.append(0)
|
||||
@ -88,21 +88,6 @@ trainning_data = _read_training_data()
|
||||
X = trainning_data.attributes
|
||||
Y = trainning_data.classes
|
||||
|
||||
# le_shape = LabelEncoder()
|
||||
# le_flexibility = LabelEncoder()
|
||||
# le_color = LabelEncoder()
|
||||
|
||||
# le_shape.fit([x[0] for x in X])
|
||||
# le_flexibility.fit([x[3] for x in X])
|
||||
# le_color.fit([x[4] for x in X])
|
||||
|
||||
# X_encoded = np.array([
|
||||
# [le_shape.transform([x[0]])[0], x[1], x[2], le_flexibility.transform([x[3]])[0], le_color.transform([x[4]])[0]]
|
||||
# for x in X
|
||||
# ])
|
||||
|
||||
# encoder = OneHotEncoder(categories='auto', sparse=False)
|
||||
# X_encoded = encoder.fit_transform(X_encoded)
|
||||
|
||||
model = tree.DecisionTreeClassifier()
|
||||
encoded = [_attributes_to_floats(x) for x in X]
|
||||
|
Binary file not shown.
@ -57,7 +57,7 @@ def create_garbage_pieces() -> List[Garbage]:
|
||||
for line in lines[1:]:
|
||||
param = line.strip().split(',')
|
||||
garbage_pieces.append(
|
||||
Garbage('img', param[0], param[1], param[2], param[3], param[4], param[5], param[6], param[7]))
|
||||
Garbage('img', param[0], param[1], param[2], param[3], param[4], param[5], param[6], param[7].strip()))
|
||||
return garbage_pieces
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user