neural network with comments

This commit is contained in:
micwuj 2023-06-06 18:52:04 +02:00
parent b241f3ad1e
commit 2fc5eed8c4
9 changed files with 122 additions and 57 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 KiB

51
main.py
View File

@ -1,7 +1,7 @@
import pygame
import sys
import random
from settings import screen_height, screen_width, SIZE, SPECIES, block_size, tile, road_coords, directions
from settings import SIZE, directions, draw_lines_on_window
from src.map import drawRoads, seedForFirstTime, return_fields_list, WORLD_MATRIX, get_type_by_position
from src.Tractor import Tractor
from src.bfs import Astar
@ -9,7 +9,7 @@ from src.Plant import Plant
from src.Field import Field
import pickle
import os
from src.ID3 import make_decision
from src.ID3 import action
import torch
import src.neural_networks as neural_networks
@ -43,13 +43,11 @@ def recognize_plants(fields, destination):
else:
pred = 'none'
print(pred)
return pred
# pygame initialization
pygame.init()
clock = pygame.time.Clock()
#pygame.mouse.set_visible(False)
# GAME SCREEN
screen = pygame.display.set_mode(SIZE)
@ -60,14 +58,7 @@ screen.fill((90,50,20))
background.fill((90,50,20))
background = drawRoads(background)
for line in range(26):
pygame.draw.line(background, (0, 0, 0), (0, line * block_size), (936, line * block_size))
pygame.draw.line(background, (0, 0, 0), (line * block_size, 0), (line * block_size, screen_height))
pygame.draw.line(background, (0, 0, 0), (968, 285), (1336 , 285))
pygame.draw.line(background, (0, 0, 0), (968, 649), (1336 , 649))
pygame.draw.line(background, (0, 0, 0), (968, 285), (968, 649))
pygame.draw.line(background, (0, 0, 0), (1336, 285), (1336, 649))
draw_lines_on_window(background)
#TRACTOR
tractor = Tractor('oil','manual', 'fuel', 'fertilizer1', 20)
@ -82,8 +73,6 @@ plant_group = pygame.sprite.Group()
plant_group = seedForFirstTime()
fields = return_fields_list()
#
tractor_move = pygame.USEREVENT + 1
pygame.time.set_timer(tractor_move, 200)
@ -104,25 +93,6 @@ dtree = pickle.load(open(os.path.join('src','tree.plk'),'rb'))
this_field = WORLD_MATRIX[mx][my]
this_contain = Field.getContain(this_field)
def action(this_contain):
if isinstance(this_contain, Plant):
this_plant = this_contain
params=Plant.getParameters(this_plant)
# print(this_field)
#ID3 decision
decision=make_decision(params[0],params[1],params[2],params[3],params[4],tractor.fuel,tractor.capacity,params[5],dtree)
# print('wzorst',params[0],'wilgotnosc',params[1],'dni_od_nawiezienia',params[2],'pogoda',params[3],'zdrowa',params[4],'paliwo',tractor.fuel,'pojemnosc eq',tractor.capacity,'cena sprzedazy',params[5])
# print(decision)
if decision == 1:
print('Gotowe do zbioru')
return 1
else:
print('nie zbieramy')
return 0
else:
print('Road, no plant growing')
return 0
moves = goal_astar.search(
[tractor.rect.x, tractor.rect.y, directions[tractor.rotation]], destination)
@ -142,7 +112,7 @@ if __name__ == "__main__":
if event.type == pygame.KEYDOWN:
if event.key==pygame.K_RETURN:
tractor.collect(plant_group)
recognize_plants(fields, destination)
# recognize_plants(fields, destination)
if event.key == pygame.K_ESCAPE:
running = False
if event.type == tractor_move:
@ -151,11 +121,16 @@ if __name__ == "__main__":
step = moves_list.pop() # pop the last element
moves = tuple(moves_list) # convert back to tuple
tractor.movement(step[0])
if tractor.rect.x == destination[0] and tractor.rect.y == destination[1] and action(this_contain) == 1:
# checks if tractor is in destiantion field and make decision if it's ready to collect
if tractor.rect.x == destination[0] and tractor.rect.y == destination[1] and action(this_contain, Plant, tractor, dtree) == 1:
# show what should be in this field
print('expected:', expected_plant)
if recognize_plants(fields, destination) == 'carrot' or 'potato' or 'wheat':
# check if program correctly recognize plant
if recognize_plants(fields, destination) == expected_plant:
# if correctly recognized than plant can be collected
tractor.collect(plant_group)
else:
print('wrong recognition')
Tractor.movement_using_keys(tractor)

View File

@ -1,4 +1,5 @@
from cmath import sqrt
import pygame
screen_width = 1368
@ -19,3 +20,13 @@ field_size = field_width*field_height
fields_amount = 25
directions = {0: 'UP', 90: 'RIGHT', 180: 'DOWN', 270: 'LEFT'}
def draw_lines_on_window(background):
for line in range(26):
pygame.draw.line(background, (0, 0, 0), (0, line * block_size), (936, line * block_size))
pygame.draw.line(background, (0, 0, 0), (line * block_size, 0), (line * block_size, screen_height))
pygame.draw.line(background, (0, 0, 0), (968, 285), (1336 , 285))
pygame.draw.line(background, (0, 0, 0), (968, 649), (1336 , 649))
pygame.draw.line(background, (0, 0, 0), (968, 285), (968, 649))
pygame.draw.line(background, (0, 0, 0), (1336, 285), (1336, 649))

View File

@ -42,3 +42,22 @@ def learnTree():
# #przy robaczywej == 1 daje ok czyli jak 1 to git jest mozna zbierac, ale planowalem inaczej
# decision=make_decision(70,85,12,4,0,65,54,1500,dtree)
# print(decision)
def action(this_contain, Plant, tractor, dtree):
if isinstance(this_contain, Plant):
this_plant = this_contain
params=Plant.getParameters(this_plant)
# print(this_field)
#ID3 decision
decision=make_decision(params[0],params[1],params[2],params[3],params[4],tractor.fuel,tractor.capacity,params[5],dtree)
# print('wzorst',params[0],'wilgotnosc',params[1],'dni_od_nawiezienia',params[2],'pogoda',params[3],'zdrowa',params[4],'paliwo',tractor.fuel,'pojemnosc eq',tractor.capacity,'cena sprzedazy',params[5])
# print(decision)
if decision == 1:
print('Gotowe do zbioru')
return 1
else:
print('nie zbieramy')
return 0
else:
print('Road, no plant growing')
return 0

Binary file not shown.

Binary file not shown.

View File

@ -6,24 +6,45 @@ from torch.optim import Adam
from torch.autograd import Variable
from torch.utils.data import DataLoader
# Check if CUDA-enabled GPU is available and set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Define the classes for classification
classes = ['carrot', 'potato', 'wheat']
# Set the paths for the training and test data directories
train_path = 'assets/learning/train'
test_path = 'assets/learning/test'
#list of transforms to compose (lista przekształceń do utworzenia)
transformer = torchvision.transforms.Compose([
# resize input image to the given size
torchvision.transforms.Resize((150, 150)),
# convert image to tensor(muli dim array)
torchvision.transforms.ToTensor(),
# normalize tensor image with wit mean and standard deviation
# normalize doesn't support PIL image -> that is why we do .ToTensor before
# output[channel] = (input[channel] - mean[channel]) / std[channel]
torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
class Net(nn.Module):
def __init__(self, num_classes=3):
super(Net, self).__init__()
# Sequential - ordered dictionary
# Define the convolutional layers
# The output of one layer serves as the input to the next layer (3->12->20->32)
self.features = nn.Sequential(
# Applies a 2D convolution over an input signal composed of several input planes
# Stosuje splot 2D dla sygnału wejściowego złożonego z kilku płaszczyzn wejściowych
nn.Conv2d(3, 12, kernel_size=3, stride=1, padding=1),
# parameter of torch.nn.BatchNorm2d is the number of dimensions/channels that output
# from the last layer and come in to the batch norm layer.
nn.BatchNorm2d(12),
# activation function relu(x) = { 0 if x<0, x if x > 0}
# after each layer, an activation function needs to be applied
# so as to make the network non-linear and fit complex data
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(12, 20, kernel_size=3, stride=1, padding=1),
@ -32,72 +53,111 @@ class Net(nn.Module):
nn.BatchNorm2d(32),
nn.ReLU()
)
# takes the flattened feature maps from the previous convolutional layers as input
self.classifier = nn.Linear(32 * 75 * 75, num_classes)
def forward(self, x):
# Forward pass through the network
x = self.features(x)
# Pass the input through the sequential block of
# convolutional layers and activation functions
x = x.view(x.size(0), -1)
# Reshape the tensor by flattening it along the second dimension
x = self.classifier(x)
# Pass the flattened tensor through the linear layer for classification
return x
# Return the output tensor
def train(dataloader, model, optimizer, loss_fn):
model.train()
size = len(dataloader.dataset)
# Get the total number of training examples
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Move the input tensors to the appropriate device (CPU or GPU)
optimizer.zero_grad()
# Clear the gradients of the model parameters
pred = model(X.float())
# Perform a forward pass to obtain the predicted outputs
loss = loss_fn(pred, y)
# Compute the loss between the predicted outputs and the ground truth labels
loss.backward()
# Perform backpropagation to compute the gradients of the model parameters
optimizer.step()
# Update the model parameters using the computed gradients
if batch % 5 == 0:
current = batch * len(X)
# Compute the current batch size
print(f"loss: {loss.item():>7f} [{current:>5d}/{size:>5d}]")
# Print the current loss and the progress of the training in material def accuracy
def test(dataloader, model, loss_fn):
model.eval()
# Set the model to evaluation mode
size = len(dataloader.dataset)
# Get the total number of examples in the dataloader
test_loss, correct = 0, 0
# Initialize variables to keep track of the total test
# loss and the number of correct predictions
with torch.no_grad():
# Disable gradient computation
for X, y in dataloader:
X, y = X.to(device), y.to(device)
# Move the input tensors to the appropriate device (CPU or GPU)
pred = model(X.float())
# Perform a forward pass to obtain the predicted outputs
test_loss += loss_fn(pred, y).item()
# Compute the loss between the predicted outputs and the ground truth labels
correct += (pred.argmax(1) == y).sum().item()
# Count the number of correct predictions
test_loss /= size
# Calculate the average test loss
accuracy = 100.0 * correct / size
# Calculate the accuracy as a percentage
print(f"Test Error:\n Accuracy: {accuracy:.1f}%, Avg loss: {test_loss:.8f}\n")
# Print the test accuracy and average test loss
def predict(img_path, model):
image = Image.open(img_path).convert('RGB')
# Open the image file from the given path and convert it to RGB mode
image_tensor = transformer(image).unsqueeze(0).to(device)
# Apply the image transformation pipeline defined earlier and convert the image to a tensor
# Add an extra dimension at the beginning to represent the batch
# Move the image tensor to the appropriate device (CPU or GPU)
output = model(image_tensor)
# Pass the image tensor through the model to obtain the output logits
_, predicted_idx = torch.max(output, 1)
# Find the index of the predicted class by taking the maximum value along the second dimension
pred = classes[predicted_idx.item()]
# Retrieve the corresponding class label from the classes list using the predicted index
return pred
def learn():
num_epochs = 50
batch_size = 64
# Create a dataset from the images in the train_path directory
train_dataset = torchvision.datasets.ImageFolder(train_path, transform=transformer)
# Create a data loader for the train dataset to load data in batches
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# Create a dataset from the images in the test_path directory
test_dataset = torchvision.datasets.ImageFolder(test_path, transform=transformer)
# Create a data loader for the test dataset to load data in batches
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# Create an instance of the neural network model
model = Net(len(classes)).to(device)
# Create an optimizer for updating the model parameters during training
optimizer = Adam(model.parameters(), lr=1e-3, weight_decay=0.0001)
# Define the loss function for computing the training loss
loss_fn = nn.CrossEntropyLoss()
# Perform training for the specified number of epochs
for epoch in range(num_epochs):
print(f"Epoch {epoch + 1}\n-------------------------------")
# Train the model using the training data
train(train_loader, model, optimizer, loss_fn)
# Evaluate the model on the test data
test(test_loader, model, loss_fn)
# Print a message indicating that the training is done
print("Done!")
# Save the trained model's state dictionary to a file
torch.save(model.state_dict(), 'plants2.model')