neural network
This commit is contained in:
parent
dbb637af6c
commit
c70e745a76
16
main.py
16
main.py
@ -11,11 +11,11 @@ import pickle
|
|||||||
import os
|
import os
|
||||||
from src.ID3 import make_decision
|
from src.ID3 import make_decision
|
||||||
import torch
|
import torch
|
||||||
import cnn_model
|
import neural_networks
|
||||||
|
|
||||||
def recognize_plants(plants_array):
|
def recognize_plants(plants_array):
|
||||||
checkpoint = torch.load(f'plants.model')
|
checkpoint = torch.load(f'plants.model')
|
||||||
model = cnn_model.Net(num_classes=3)
|
model = neural_networks.Net(num_classes=3)
|
||||||
model.load_state_dict(checkpoint)
|
model.load_state_dict(checkpoint)
|
||||||
model.eval()
|
model.eval()
|
||||||
img = ''
|
img = ''
|
||||||
@ -29,15 +29,15 @@ def recognize_plants(plants_array):
|
|||||||
for j in range(11):
|
for j in range(11):
|
||||||
if plants_array[j][i] == 'carrot':
|
if plants_array[j][i] == 'carrot':
|
||||||
img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg'
|
img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg'
|
||||||
pred = cnn_model.prediction(img, model)
|
pred = neural_networks.prediction(img, model)
|
||||||
#show_plant_img(img)
|
#show_plant_img(img)
|
||||||
elif plants_array[j][i] == 'potato':
|
elif plants_array[j][i] == 'potato':
|
||||||
img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg'
|
img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg'
|
||||||
pred = cnn_model.prediction(img, model)
|
pred = neural_networks.prediction(img, model)
|
||||||
# show_plant_img(img)
|
# show_plant_img(img)
|
||||||
elif plants_array[j][i] == 'wheat':
|
elif plants_array[j][i] == 'wheat':
|
||||||
img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg'
|
img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg'
|
||||||
pred = cnn_model.prediction(img, model)
|
pred = neural_networks.prediction(img, model)
|
||||||
# show_plant_img(img)
|
# show_plant_img(img)
|
||||||
else:
|
else:
|
||||||
pred = 'none'
|
pred = 'none'
|
||||||
@ -50,15 +50,15 @@ def recognize_plants(plants_array):
|
|||||||
for j in range(10,-1,-1):
|
for j in range(10,-1,-1):
|
||||||
if plants_array[j][i] == 'carrot':
|
if plants_array[j][i] == 'carrot':
|
||||||
img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg'
|
img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg'
|
||||||
pred = cnn_model.prediction(img, model)
|
pred = neural_networks.prediction(img, model)
|
||||||
# show_plant_img(img)
|
# show_plant_img(img)
|
||||||
elif plants_array[j][i] == 'potato':
|
elif plants_array[j][i] == 'potato':
|
||||||
img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg'
|
img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg'
|
||||||
pred = cnn_model.prediction(img, model)
|
pred = neural_networks.prediction(img, model)
|
||||||
# show_plant_img(img)
|
# show_plant_img(img)
|
||||||
elif plants_array[j][i] == 'wheat':
|
elif plants_array[j][i] == 'wheat':
|
||||||
img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg'
|
img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg'
|
||||||
pred = cnn_model.prediction(img, model)
|
pred = neural_networks.prediction(img, model)
|
||||||
# show_plant_img(img)
|
# show_plant_img(img)
|
||||||
else:
|
else:
|
||||||
pred = 'none'
|
pred = 'none'
|
||||||
|
132
src/cnn_model.py
132
src/cnn_model.py
@ -1,132 +0,0 @@
|
|||||||
import torch
|
|
||||||
import torchvision
|
|
||||||
from PIL import Image
|
|
||||||
import torch.nn as nn
|
|
||||||
from torch.optim import Adam
|
|
||||||
from torch.autograd import Variable
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
classes = ['carrot', 'potato', 'wheat']
|
|
||||||
|
|
||||||
train_path = ('assets/learning/train')
|
|
||||||
|
|
||||||
test_path = ('assets/learning/test')
|
|
||||||
|
|
||||||
transformer = torchvision.transforms.Compose([
|
|
||||||
torchvision.transforms.Resize((150, 150)),
|
|
||||||
torchvision.transforms.ToTensor(),
|
|
||||||
torchvision.transforms.Normalize([0.5, 0.5, 0.5],
|
|
||||||
[0.5, 0.5, 0.5])
|
|
||||||
])
|
|
||||||
|
|
||||||
class Net(nn.Module):
|
|
||||||
def __init__(self, num_classes=6):
|
|
||||||
super(Net, self).__init__()
|
|
||||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
|
|
||||||
self.bn1 = nn.BatchNorm2d(num_features=12)
|
|
||||||
self.relu1 = nn.ReLU()
|
|
||||||
|
|
||||||
self.pool = nn.MaxPool2d(kernel_size=2)
|
|
||||||
|
|
||||||
self.conv2 = nn.Conv2d(in_channels=12, out_channels=20, kernel_size=3, stride=1, padding=1)
|
|
||||||
self.relu2 = nn.ReLU()
|
|
||||||
|
|
||||||
self.conv3 = nn.Conv2d(in_channels=20, out_channels=32, kernel_size=3, stride=1, padding=1)
|
|
||||||
self.bn3 = nn.BatchNorm2d(num_features=32)
|
|
||||||
self.relu3 = nn.ReLU()
|
|
||||||
|
|
||||||
self.fc = nn.Linear(in_features=75 * 75 * 32, out_features=num_classes)
|
|
||||||
|
|
||||||
def forward(self, input):
|
|
||||||
output = self.conv1(input)
|
|
||||||
output = self.bn1(output)
|
|
||||||
output = self.relu1(output)
|
|
||||||
|
|
||||||
output = self.pool(output)
|
|
||||||
|
|
||||||
output = self.conv2(output)
|
|
||||||
output = self.relu2(output)
|
|
||||||
|
|
||||||
output = self.conv3(output)
|
|
||||||
output = self.bn3(output)
|
|
||||||
output = self.relu3(output)
|
|
||||||
|
|
||||||
output = output.view(-1, 32 * 75 * 75)
|
|
||||||
output = self.fc(output)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
def train(dataloader, model: Net, optimizer: Adam, loss_fn: nn.CrossEntropyLoss):
|
|
||||||
size = len(dataloader.dataset)
|
|
||||||
for batch, (X, y) in enumerate(dataloader):
|
|
||||||
X, y = X.to(device), y.to(device)
|
|
||||||
|
|
||||||
pred = model(X.float())
|
|
||||||
loss = loss_fn(pred, y)
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
if batch % 5 == 0:
|
|
||||||
loss, current = loss.item(), batch * len(X)
|
|
||||||
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
|
||||||
|
|
||||||
|
|
||||||
def test(dataloader, model: Net, loss_fn: nn.CrossEntropyLoss):
|
|
||||||
size = len(dataloader.dataset)
|
|
||||||
model.eval()
|
|
||||||
test_loss, correct = 0, 0
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
for X, y in dataloader:
|
|
||||||
X, y = X.to(device), y.to(device)
|
|
||||||
pred = model(X.float())
|
|
||||||
test_loss += loss_fn(pred, y).item()
|
|
||||||
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
|
||||||
|
|
||||||
test_loss /= size
|
|
||||||
correct /= size
|
|
||||||
print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
|
||||||
|
|
||||||
|
|
||||||
def prediction(img_path, model: Net):
|
|
||||||
image = Image.open(img_path).convert('RGB')
|
|
||||||
image_tensor = transformer(image).float()
|
|
||||||
image_tensor = image_tensor.unsqueeze_(0)
|
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
image_tensor.cuda()
|
|
||||||
input = Variable(image_tensor)
|
|
||||||
output = model(input)
|
|
||||||
|
|
||||||
index = output.data.numpy().argmax()
|
|
||||||
pred = classes[index]
|
|
||||||
return pred
|
|
||||||
|
|
||||||
|
|
||||||
def learn():
|
|
||||||
num_epochs = 50
|
|
||||||
|
|
||||||
train_loader = DataLoader(
|
|
||||||
torchvision.datasets.ImageFolder(train_path, transform=transformer),
|
|
||||||
batch_size=64, shuffle=True
|
|
||||||
)
|
|
||||||
test_loader = DataLoader(
|
|
||||||
torchvision.datasets.ImageFolder(test_path, transform=transformer),
|
|
||||||
batch_size=32, shuffle=True
|
|
||||||
)
|
|
||||||
|
|
||||||
model = Net(3).to(device)
|
|
||||||
optimizer = Adam(model.parameters(), lr=1e-3, weight_decay=0.0001)
|
|
||||||
loss_fn = nn.CrossEntropyLoss()
|
|
||||||
|
|
||||||
for t in range(num_epochs):
|
|
||||||
print(f"Epoch {t + 1}\n-------------------------------")
|
|
||||||
train(train_loader, model, optimizer, loss_fn)
|
|
||||||
test(test_loader, model, loss_fn)
|
|
||||||
print("Done!")
|
|
||||||
torch.save(model.state_dict(), f'plants.model')
|
|
74
src/neural_networks.py
Normal file
74
src/neural_networks.py
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
from PIL import Image
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.optim import Adam
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
classes = ['carrot', 'potato', 'wheat']
|
||||||
|
|
||||||
|
train_path = 'assets/learning/train'
|
||||||
|
test_path = 'assets/learning/test'
|
||||||
|
|
||||||
|
transformer = torchvision.transforms.Compose([
|
||||||
|
torchvision.transforms.Resize((150, 150)),
|
||||||
|
torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
||||||
|
])
|
||||||
|
|
||||||
|
class Net(nn.Module):
|
||||||
|
def __init__(self, num_classes=3):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.features = nn.Sequential(
|
||||||
|
nn.Conv2d(3, 12, kernel_size=3, stride=1, padding=1),
|
||||||
|
nn.BatchNorm2d(12),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.MaxPool2d(kernel_size=2),
|
||||||
|
nn.Conv2d(12, 20, kernel_size=3, stride=1, padding=1),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(20, 32, kernel_size=3, stride=1, padding=1),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.ReLU()
|
||||||
|
)
|
||||||
|
self.classifier = nn.Linear(32 * 75 * 75, num_classes)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.features(x)
|
||||||
|
x = x.view(x.size(0), -1)
|
||||||
|
x = self.classifier(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def train(dataloader, model, optimizer, loss_fn):
|
||||||
|
model.train()
|
||||||
|
size = len(dataloader.dataset)
|
||||||
|
for batch, (X, y) in enumerate(dataloader):
|
||||||
|
X, y = X.to(device), y.to(device)
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
pred = model(X.float())
|
||||||
|
loss = loss_fn(pred, y)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if batch % 5 == 0:
|
||||||
|
current = batch * len(X)
|
||||||
|
print(f"loss: {loss.item():>7f} [{current:>5d}/{size:>5d}]")
|
||||||
|
|
||||||
|
def test(dataloader, model, loss_fn):
|
||||||
|
model.eval()
|
||||||
|
size = len(dataloader.dataset)
|
||||||
|
test_loss, correct = 0, 0
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for X, y in dataloader:
|
||||||
|
X, y = X.to(device), y.to(device)
|
||||||
|
pred = model(X.float())
|
||||||
|
test_loss += loss_fn(pred, y).item()
|
||||||
|
correct += (pred.argmax(1) == y).sum().item()
|
||||||
|
|
||||||
|
test_loss /= size
|
||||||
|
accuracy = 100.0 * correct / size
|
||||||
|
print(f"Test Error:\n Accuracy: {accuracy:.1f}%, Avg loss: {test_loss:.8f}\n")
|
||||||
|
|
Loading…
Reference in New Issue
Block a user