neural network

This commit is contained in:
dardwo 2023-06-03 22:11:48 +02:00
parent dbb637af6c
commit c70e745a76
3 changed files with 82 additions and 140 deletions

16
main.py
View File

@ -11,11 +11,11 @@ import pickle
import os import os
from src.ID3 import make_decision from src.ID3 import make_decision
import torch import torch
import cnn_model import neural_networks
def recognize_plants(plants_array): def recognize_plants(plants_array):
checkpoint = torch.load(f'plants.model') checkpoint = torch.load(f'plants.model')
model = cnn_model.Net(num_classes=3) model = neural_networks.Net(num_classes=3)
model.load_state_dict(checkpoint) model.load_state_dict(checkpoint)
model.eval() model.eval()
img = '' img = ''
@ -29,15 +29,15 @@ def recognize_plants(plants_array):
for j in range(11): for j in range(11):
if plants_array[j][i] == 'carrot': if plants_array[j][i] == 'carrot':
img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg' img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg'
pred = cnn_model.prediction(img, model) pred = neural_networks.prediction(img, model)
#show_plant_img(img) #show_plant_img(img)
elif plants_array[j][i] == 'potato': elif plants_array[j][i] == 'potato':
img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg' img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg'
pred = cnn_model.prediction(img, model) pred = neural_networks.prediction(img, model)
# show_plant_img(img) # show_plant_img(img)
elif plants_array[j][i] == 'wheat': elif plants_array[j][i] == 'wheat':
img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg' img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg'
pred = cnn_model.prediction(img, model) pred = neural_networks.prediction(img, model)
# show_plant_img(img) # show_plant_img(img)
else: else:
pred = 'none' pred = 'none'
@ -50,15 +50,15 @@ def recognize_plants(plants_array):
for j in range(10,-1,-1): for j in range(10,-1,-1):
if plants_array[j][i] == 'carrot': if plants_array[j][i] == 'carrot':
img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg' img = 'assets/learning/test/carrot/' + str(random.randint(1, 200)) + '.jpg'
pred = cnn_model.prediction(img, model) pred = neural_networks.prediction(img, model)
# show_plant_img(img) # show_plant_img(img)
elif plants_array[j][i] == 'potato': elif plants_array[j][i] == 'potato':
img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg' img = 'assets/learning/test/potato/' + str(random.randint(1, 200)) + '.jpg'
pred = cnn_model.prediction(img, model) pred = neural_networks.prediction(img, model)
# show_plant_img(img) # show_plant_img(img)
elif plants_array[j][i] == 'wheat': elif plants_array[j][i] == 'wheat':
img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg' img = 'assets/learning/test/wheat/' + str(random.randint(1, 200)) + '.jpg'
pred = cnn_model.prediction(img, model) pred = neural_networks.prediction(img, model)
# show_plant_img(img) # show_plant_img(img)
else: else:
pred = 'none' pred = 'none'

View File

@ -1,132 +0,0 @@
import torch
import torchvision
from PIL import Image
import torch.nn as nn
from torch.optim import Adam
from torch.autograd import Variable
from torch.utils.data import DataLoader
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
classes = ['carrot', 'potato', 'wheat']
train_path = ('assets/learning/train')
test_path = ('assets/learning/test')
transformer = torchvision.transforms.Compose([
torchvision.transforms.Resize((150, 150)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.5, 0.5, 0.5],
[0.5, 0.5, 0.5])
])
class Net(nn.Module):
def __init__(self, num_classes=6):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(num_features=12)
self.relu1 = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=20, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(in_channels=20, out_channels=32, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(num_features=32)
self.relu3 = nn.ReLU()
self.fc = nn.Linear(in_features=75 * 75 * 32, out_features=num_classes)
def forward(self, input):
output = self.conv1(input)
output = self.bn1(output)
output = self.relu1(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu2(output)
output = self.conv3(output)
output = self.bn3(output)
output = self.relu3(output)
output = output.view(-1, 32 * 75 * 75)
output = self.fc(output)
return output
def train(dataloader, model: Net, optimizer: Adam, loss_fn: nn.CrossEntropyLoss):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X.float())
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 5 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model: Net, loss_fn: nn.CrossEntropyLoss):
size = len(dataloader.dataset)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X.float())
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= size
correct /= size
print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
def prediction(img_path, model: Net):
image = Image.open(img_path).convert('RGB')
image_tensor = transformer(image).float()
image_tensor = image_tensor.unsqueeze_(0)
if torch.cuda.is_available():
image_tensor.cuda()
input = Variable(image_tensor)
output = model(input)
index = output.data.numpy().argmax()
pred = classes[index]
return pred
def learn():
num_epochs = 50
train_loader = DataLoader(
torchvision.datasets.ImageFolder(train_path, transform=transformer),
batch_size=64, shuffle=True
)
test_loader = DataLoader(
torchvision.datasets.ImageFolder(test_path, transform=transformer),
batch_size=32, shuffle=True
)
model = Net(3).to(device)
optimizer = Adam(model.parameters(), lr=1e-3, weight_decay=0.0001)
loss_fn = nn.CrossEntropyLoss()
for t in range(num_epochs):
print(f"Epoch {t + 1}\n-------------------------------")
train(train_loader, model, optimizer, loss_fn)
test(test_loader, model, loss_fn)
print("Done!")
torch.save(model.state_dict(), f'plants.model')

74
src/neural_networks.py Normal file
View File

@ -0,0 +1,74 @@
import torch
import torchvision
from PIL import Image
import torch.nn as nn
from torch.optim import Adam
from torch.autograd import Variable
from torch.utils.data import DataLoader
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
classes = ['carrot', 'potato', 'wheat']
train_path = 'assets/learning/train'
test_path = 'assets/learning/test'
transformer = torchvision.transforms.Compose([
torchvision.transforms.Resize((150, 150)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
class Net(nn.Module):
def __init__(self, num_classes=3):
super(Net, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 12, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(12),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(12, 20, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(20, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU()
)
self.classifier = nn.Linear(32 * 75 * 75, num_classes)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def train(dataloader, model, optimizer, loss_fn):
model.train()
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
optimizer.zero_grad()
pred = model(X.float())
loss = loss_fn(pred, y)
loss.backward()
optimizer.step()
if batch % 5 == 0:
current = batch * len(X)
print(f"loss: {loss.item():>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
model.eval()
size = len(dataloader.dataset)
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X.float())
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).sum().item()
test_loss /= size
accuracy = 100.0 * correct / size
print(f"Test Error:\n Accuracy: {accuracy:.1f}%, Avg loss: {test_loss:.8f}\n")