2023-05-05 02:56:22 +02:00
|
|
|
import copy
|
|
|
|
from src.obj.Object import Object
|
|
|
|
|
|
|
|
|
|
|
|
class Waiter(Object):
|
2023-05-26 03:02:16 +02:00
|
|
|
def __init__(self, position, orientation, square_size, screen_size, basket=[], memory=[], battery=300):
|
2023-05-14 14:23:37 +02:00
|
|
|
super().__init__("waiter", position, orientation, square_size, screen_size)
|
2023-05-26 03:02:16 +02:00
|
|
|
self.battery = battery
|
|
|
|
self.basket_size = 4
|
|
|
|
self.memory_size = 4
|
2023-05-05 02:56:22 +02:00
|
|
|
self.basket = basket
|
2023-05-26 03:02:16 +02:00
|
|
|
self.memory = memory
|
2023-05-05 02:56:22 +02:00
|
|
|
self.prev_position = copy.deepcopy(self.position)
|
|
|
|
self.prev_orientation = copy.copy(self.orientation)
|
|
|
|
|
2023-05-14 14:23:37 +02:00
|
|
|
def changeState(self, state):
|
|
|
|
self.position = copy.deepcopy(state.position)
|
|
|
|
self.orientation = copy.copy(state.orientation)
|
|
|
|
self.basket = copy.copy(state.basket)
|
2023-05-26 03:02:16 +02:00
|
|
|
self.battery -= state.cost
|
2023-05-14 14:23:37 +02:00
|
|
|
return state
|
|
|
|
|
2023-05-26 03:02:16 +02:00
|
|
|
def dish_in_basket(self, table) -> bool:
|
|
|
|
return table in self.basket
|
2023-05-26 01:29:28 +02:00
|
|
|
self.calcTree()
|
2023-05-14 14:23:37 +02:00
|
|
|
return state
|
|
|
|
|
2023-05-26 01:29:28 +02:00
|
|
|
def calcTree(self):
|
|
|
|
from sklearn import tree
|
2023-05-26 03:25:33 +02:00
|
|
|
import pandas as pd # for manipulating the csv data
|
2023-05-26 01:29:28 +02:00
|
|
|
import numpy as np
|
|
|
|
import os
|
|
|
|
|
2023-05-26 03:25:33 +02:00
|
|
|
# importing the dataset from the disk
|
|
|
|
train_data_m = np.genfromtxt(
|
|
|
|
"dataset/converted_dataset.csv", delimiter=",", skip_header=1)
|
2023-05-26 01:29:28 +02:00
|
|
|
|
|
|
|
X_train = [data[:-1] for data in train_data_m]
|
|
|
|
y_train = [data[-1] for data in train_data_m]
|
|
|
|
# Create the decision tree classifier using the ID3 algorithm
|
|
|
|
clf = tree.DecisionTreeClassifier(criterion='entropy')
|
|
|
|
|
|
|
|
# Train the decision tree on the training data
|
|
|
|
clf.fit(X_train, y_train)
|
|
|
|
|
|
|
|
# Visualize the trained decision tree
|
2023-05-26 03:25:33 +02:00
|
|
|
tree_text = tree.export_text(clf, feature_names=[
|
|
|
|
'Battery Charge', 'Fullness', 'Ready orders', 'Waiting tables', 'Availability', 'Cleanliness', 'Error'])
|
2023-05-26 01:29:28 +02:00
|
|
|
with open('decision_tree.txt', 'w') as f:
|
2023-05-26 03:25:33 +02:00
|
|
|
f.write(tree_text) # Save the visualization as a text file
|
2023-05-26 01:29:28 +02:00
|
|
|
|
|
|
|
# Test the decision tree with a new example
|
2023-05-26 03:25:33 +02:00
|
|
|
# Battery Charge,Fullness,Ready orders,Waiting tables,Availability,Cleanliness,Error
|
|
|
|
new_example = [self.battery, 0, self.orderReadiness,
|
|
|
|
self.waitingTables, self.availability, self.cleanliness, self.error]
|
2023-05-26 01:29:28 +02:00
|
|
|
predicted_label = clf.predict([new_example])
|
2023-05-26 03:25:33 +02:00
|
|
|
if predicted_label[0] > 0:
|
|
|
|
result = "YES"
|
2023-05-26 01:29:28 +02:00
|
|
|
else:
|
2023-05-26 03:25:33 +02:00
|
|
|
result = "NO"
|
2023-05-26 01:29:28 +02:00
|
|
|
print("Predicted Label:", result)
|
2023-05-26 03:25:33 +02:00
|
|
|
|
2023-05-26 01:29:28 +02:00
|
|
|
def calcTreePDF(self):
|
|
|
|
from sklearn import tree
|
2023-05-26 03:25:33 +02:00
|
|
|
import pandas as pd # for manipulating the csv data
|
2023-05-26 01:29:28 +02:00
|
|
|
import numpy as np
|
|
|
|
import graphviz
|
|
|
|
import os
|
2023-05-26 03:25:33 +02:00
|
|
|
os.environ["PATH"] += os.pathsep + \
|
|
|
|
'C:/Program Files (x86)/Graphviz/bin/'
|
2023-05-26 01:29:28 +02:00
|
|
|
|
2023-05-26 03:25:33 +02:00
|
|
|
# importing the dataset from the disk
|
|
|
|
train_data_m = np.genfromtxt(
|
|
|
|
"dataset/converted_dataset.csv", delimiter=",", skip_header=1)
|
2023-05-26 01:29:28 +02:00
|
|
|
|
|
|
|
X_train = [data[:-1] for data in train_data_m]
|
|
|
|
y_train = [data[-1] for data in train_data_m]
|
|
|
|
# Create the decision tree classifier using the ID3 algorithm
|
|
|
|
clf = tree.DecisionTreeClassifier(criterion='entropy')
|
|
|
|
|
|
|
|
# Train the decision tree on the training data
|
|
|
|
clf.fit(X_train, y_train)
|
|
|
|
|
|
|
|
# Visualize the trained decision tree
|
2023-05-26 03:25:33 +02:00
|
|
|
tree_text = tree.export_text(clf, feature_names=[
|
|
|
|
'Battery Charge', 'Fullness', 'Ready orders', 'Waiting tables', 'Availability', 'Cleanliness', 'Error'])
|
2023-05-26 01:29:28 +02:00
|
|
|
with open('decision_tree.txt', 'w') as f:
|
2023-05-26 03:25:33 +02:00
|
|
|
f.write(tree_text) # Save the visualization as a text file
|
|
|
|
dot_data = tree.export_graphviz(clf, out_file=None, feature_names=[
|
|
|
|
'Battery Charge', 'Fullness', 'Ready orders', 'Waiting tables', 'Availability', 'Cleanliness', 'Error'], class_names=['NO', 'YES'], filled=True, rounded=True)
|
2023-05-26 01:29:28 +02:00
|
|
|
graph = graphviz.Source(dot_data)
|
|
|
|
graph.render("decision_tree") # Save the visualization as a PDF file
|
|
|
|
|
|
|
|
# Test the decision tree with a new example
|
2023-05-26 03:25:33 +02:00
|
|
|
# Battery Charge,Fullness,Ready orders,Waiting tables,Availability,Cleanliness,Error
|
|
|
|
new_example = [self.battery, 0, self.orderReadiness,
|
|
|
|
self.waitingTables, self.availability, self.cleanliness, self.error]
|
2023-05-26 01:29:28 +02:00
|
|
|
predicted_label = clf.predict([new_example])
|
2023-05-26 03:25:33 +02:00
|
|
|
if predicted_label[0] > 0:
|
|
|
|
result = "YES"
|
2023-05-26 01:29:28 +02:00
|
|
|
else:
|
2023-05-26 03:25:33 +02:00
|
|
|
result = "NO"
|
2023-05-26 01:29:28 +02:00
|
|
|
print("Predicted Label:", result)
|
|
|
|
|
2023-05-05 02:56:22 +02:00
|
|
|
def dampState(self):
|
|
|
|
self.prev_position = copy.deepcopy(self.position)
|
|
|
|
self.prev_orientation = copy.copy(self.orientation)
|
2023-05-26 03:02:16 +02:00
|
|
|
|
|
|
|
def basket_is_full(self) -> bool:
|
|
|
|
return self.basket_size == 0
|
|
|
|
|
|
|
|
def combine_orders(self):
|
|
|
|
while not self.basket_is_full() and not self.memory_is_empty():
|
|
|
|
dish = self.memory.pop()
|
|
|
|
dish.set_done()
|
|
|
|
self.basket.append(dish)
|
|
|
|
self.basket_size -= 1
|
|
|
|
self.memory_size += 1
|
|
|
|
|
|
|
|
def deliver_dish(self, table):
|
|
|
|
if table in self.basket:
|
|
|
|
table.reset()
|
|
|
|
self.basket.remove(table)
|
|
|
|
self.basket_size += 1
|
|
|
|
|
|
|
|
def order_in_memory(self, table) -> bool:
|
|
|
|
return table in self.memory
|
2023-05-05 02:56:22 +02:00
|
|
|
|
2023-05-26 03:02:16 +02:00
|
|
|
def memory_is_empty(self) -> bool:
|
|
|
|
return not self.memory
|
2023-05-05 02:56:22 +02:00
|
|
|
|
2023-05-26 03:02:16 +02:00
|
|
|
def memory_is_full(self) -> bool:
|
|
|
|
return self.memory_size == 0
|
|
|
|
|
|
|
|
def collect_order(self, table):
|
|
|
|
if self.memory_is_full():
|
|
|
|
return
|
|
|
|
if table.agent_role == "order":
|
|
|
|
table.set_wait()
|
|
|
|
self.memory.append(table)
|
|
|
|
self.memory_size -= 1
|
|
|
|
|
|
|
|
def battary_status(self) -> str:
|
|
|
|
if self.battery >= 200:
|
|
|
|
return "hight"
|
|
|
|
elif self.battery >= 100:
|
|
|
|
return "medium"
|
|
|
|
else:
|
|
|
|
return "low"
|
|
|
|
|
|
|
|
def recharge(self):
|
|
|
|
self.battery = 300
|
2023-05-05 02:56:22 +02:00
|
|
|
|
|
|
|
def left(self):
|
|
|
|
self.orientation = (self.orientation + 1) % 4
|
|
|
|
|
|
|
|
def right(self):
|
|
|
|
self.orientation = (self.orientation - 1) % 4
|
|
|
|
|
|
|
|
def front(self):
|
|
|
|
if self.orientation % 2: # x (1 or 3)
|
|
|
|
self.position[0] += self.orientation - 2 # x (-1 or +1)
|
|
|
|
else: # y (0 or 2)
|
|
|
|
self.position[1] += self.orientation - 1 # y (-1 or +1)
|