neural network integration

This commit is contained in:
Vadzim Valchkovich 2023-06-02 12:03:31 +02:00
parent 56ca4bc891
commit b26f7b244e
7 changed files with 113 additions and 57 deletions

View File

@ -1,49 +1,49 @@
import tensorflow as tf
from keras import layers
from keras.models import Sequential
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator
# Normalizes the pixel values of an image to the range [0, 1].
# Normalizes the pixel values of an image to the range [0, 1].
def normalize(image, label):
return image / 255, label
# Set the paths to the folder containing the training data
train_data_dir = "Network/Training/"
# Set the number of classes and batch size
# Set the number of classes and batch size
num_classes = 3
batch_size = 32
# Set the image size and input shape
# Set the image size and input shape
img_width, img_height = 100, 100
input_shape = (img_width, img_height, 1)
# Load the training and validation data
# Load the training and validation data
train_ds = tf.keras.utils.image_dataset_from_directory(
train_data_dir,
validation_split=0.2,
subset="training",
shuffle=True,
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
train_data_dir,
validation_split=0.2,
subset="training",
shuffle=True,
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.utils.image_dataset_from_directory(
train_data_dir,
validation_split=0.2,
subset="validation",
shuffle=True,
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
# Get the class names
train_data_dir,
validation_split=0.2,
subset="validation",
shuffle=True,
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
# Get the class names
class_names = train_ds.class_names
print(class_names)
# Normalize the training and validation data
# Normalize the training and validation data
train_ds = train_ds.map(normalize)
val_ds = val_ds.map(normalize)
# Define the model architecture
# Define the model architecture
model = tf.keras.Sequential([
layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(img_height, img_width, 1)),
layers.Conv2D(16, 3, padding='same', activation='relu',
input_shape=(img_height, img_width, 1)),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
@ -53,16 +53,17 @@ model = tf.keras.Sequential([
layers.Dense(128, activation='relu'),
layers.Dense(num_classes, activation='softmax')
])
# Compile the model
# Compile the model
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
loss=tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True),
metrics=['accuracy'])
# Print the model summary
# Print the model summary
model.summary()
# Train the model
epochs=10
# Train the model
epochs = 10
model.fit(train_ds,
validation_data=val_ds,
epochs=epochs)
# Save the trained model
model.save('Network/trained_model.h5')
# Save the trained model
model.save('Network/trained_model.h5')

46
Network/Predictor.py Normal file
View File

@ -0,0 +1,46 @@
import os
import random
from pathlib import Path
import numpy as np
import tensorflow as tf
from tensorflow import keras
class Predictor:
def __init__(self):
# Load the trained model
self.model = keras.models.load_model('Network/trained_model.h5')
# Load the class names
self.class_names = ['table', 'done', 'order']
# Path to the folder containing test images
self.test_images_folder = 'Network/Testing/'
def predict(self, image_path):
# Load and preprocess the test image
test_image = keras.preprocessing.image.load_img(
image_path, target_size=(100, 100))
test_image = keras.preprocessing.image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
test_image = test_image / 255.0 # Normalize the image
# Reshape the image array to (1, height, width, channels)
test_image = np.reshape(test_image, (1, 100, 100, 3))
# Make predictions
predictions = self.model.predict(test_image)
predicted_class_index = np.argmax(predictions[0])
predicted_class = self.class_names[predicted_class_index]
print(predicted_class)
return predicted_class
def random_path_img(self) -> str:
folder_name = random.choice(os.listdir(self.test_images_folder))
folder_path = os.path.join(self.test_images_folder, folder_name)
filename = ""
while not (filename.endswith('.jpg') or filename.endswith('.jpeg')):
filename = random.choice(os.listdir(folder_path))
image_path = os.path.join(folder_path, filename)
return image_path

View File

@ -1,4 +1,5 @@
import os
from pathlib import Path
import numpy as np
import tensorflow as tf
from tensorflow import keras
@ -7,7 +8,7 @@ from tensorflow import keras
model = keras.models.load_model('Network/trained_model.h5')
# Load the class names
class_names = ['Table', 'Done','Order']
class_names = ['table', 'done', 'order']
# Path to the folder containing test images
test_images_folder = 'Network/Testing/'
@ -19,42 +20,45 @@ for folder_name in os.listdir(test_images_folder):
folder_path = os.path.join(test_images_folder, folder_name)
if os.path.isdir(folder_path):
print('Testing images in folder:', folder_name)
# True class based on folder name
if folder_name == 'Empty':
true_class = 'Table'
true_class = 'table'
elif folder_name == 'Food':
true_class = 'Done'
true_class = 'done'
elif folder_name == 'People':
true_class = 'Order'
true_class = 'order'
# Iterate over the files in the subfolder
for filename in os.listdir(folder_path):
if filename.endswith('.jpg') or filename.endswith('.jpeg'):
i+=1
i += 1
# Load and preprocess the test image
image_path = os.path.join(folder_path, filename)
test_image = keras.preprocessing.image.load_img(image_path, target_size=(100, 100))
test_image = keras.preprocessing.image.load_img(
image_path, target_size=(100, 100))
test_image = keras.preprocessing.image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
test_image = test_image / 255.0 # Normalize the image
# Reshape the image array to (1, height, width, channels)
test_image = np.reshape(test_image, (1,100, 100, 3))
test_image = np.reshape(test_image, (1, 100, 100, 3))
# Make predictions
predictions = model.predict(test_image)
predicted_class_index = np.argmax(predictions[0])
predicted_class = class_names[predicted_class_index]
direct = 'Network/Results/'
filename = str(i) + predicted_class + '.jpeg'
filename = str(i) + predicted_class + '.jpeg'
test_image = np.reshape(test_image, (100, 100, 3))
tf.keras.preprocessing.image.save_img(direct+filename, test_image)
Path(direct).mkdir(parents=True, exist_ok=True)
tf.keras.preprocessing.image.save_img(
direct+filename, test_image)
if predicted_class != true_class:
errorcount += 1
print('Image:', filename)
print('True class:', true_class)
print('Predicted class:', predicted_class)
print()
print('Error count: ', errorcount)
print('Error count: ', errorcount)

View File

@ -1,4 +1,4 @@
import os
from pathlib import Path
import numpy as np
import tensorflow as tf
from tensorflow import keras
@ -7,7 +7,7 @@ from tensorflow import keras
model = keras.models.load_model('Network/trained_model.h5')
# Load the class names
class_names = ['Table', 'Done','Order']
class_names = ['table', 'done', 'order']
# Load and preprocess the validation dataset
data_dir = "Network/Training/"
@ -47,6 +47,7 @@ for i in range(60):
direct = 'Network/Results/'
filename = predicted_class + str(i) + '.jpeg'
Path(direct).mkdir(parents=True, exist_ok=True)
tf.keras.preprocessing.image.save_img(direct+filename, val_images[i])
if predicted_class != true_class:
errorcount += 1
@ -54,4 +55,4 @@ for i in range(60):
print('True class:', true_class)
print('Predicted class:', predicted_class)
print()
print('Error count: ', errorcount)
print('Error count: ', errorcount)

View File

@ -49,6 +49,6 @@
---
- [ ] **Sieci neuronowe: wymagania dot. czwartego przyrostu**
- [ ] Należy przygotować zbiór uczący zawierający co najmniej 1000 przykładów dla każdej klasy.
- [ ] Agent powinien wykorzystywać wyuczoną sieć w procesie podejmowania decyzji.
- [x] **Sieci neuronowe: wymagania dot. czwartego przyrostu**
- [x] Należy przygotować zbiór uczący zawierający co najmniej 1000 przykładów dla każdej klasy.
- [x] Agent powinien wykorzystywać wyuczoną sieć w procesie podejmowania decyzji.

View File

@ -2,4 +2,6 @@
pygame==2.3.0
pandas
scikit-learn
graphviz
graphviz
tensorflow
pillow

View File

@ -1,5 +1,6 @@
import random
from src.obj.Object import Object
from Network.Predictor import Predictor
class Table(Object):
@ -8,6 +9,7 @@ class Table(Object):
self.waiting_time = 0
self.cooking_time = 0
self.is_actual = False
self.p = Predictor()
def isActual(self):
return self.is_actual
@ -17,7 +19,7 @@ class Table(Object):
return
self.is_actual = True
# here must be neural network choise
new_role = random.choice(["table", "order", "wait", "done"])
new_role = self.p.predict(self.p.random_path_img())
self.change_role(new_role, current_time)
if self.agent_role == "table":