alt_dataset #1

Closed
s474137 wants to merge 7 commits from alt_dataset into tree_increase
3 changed files with 308 additions and 17 deletions
Showing only changes of commit 0c34087424 - Show all commits

2
.gitignore vendored
View File

@ -57,3 +57,5 @@ docs/_build/
Pipfile
Pipfile.lock
decision_tree
decision_tree.pdf

View File

@ -1,26 +1,26 @@
from sklearn import tree
import pandas as pd #for manipulating the csv data
import numpy as np
import graphviz
import os
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz/bin/'
# Define the training dataset with 8 attributes and corresponding labels
training_data = [
[0, 0, 0, 1, 0, 1, 1, 0, 'A'],
[1, 0, 0, 0, 1, 1, 1, 1, 'A'],
[0, 1, 0, 1, 0, 1, 1, 1, 'B'],
[1, 0, 0, 1, 1, 0, 1, 0, 'B'],
[1, 1, 1, 0, 1, 0, 0, 1, 'B'],
[0, 0, 0, 0, 1, 1, 1, 0, 'A'],
[0, 0, 0, 1, 0, 0, 0, 0, 'B'],
[1, 1, 0, 1, 1, 1, 0, 1, 'A'],
[0, 0, 0, 0, 0, 0, 1, 1, 'B'],
[1, 0, 1, 0, 0, 1, 0, 0, 'B']
]
#train_data_m = pd.read_csv("dataset.csv") #importing the dataset from the disk
train_data_m=np.genfromtxt("dataset.csv", delimiter=",",skip_header=1);
#print(train_data_m)
# print(train_data_m) #viewing some row of the dataset
# Separate the attributes and labels
X_train = [data[:-1] for data in training_data]
y_train = [data[-1] for data in training_data]
#X_train = [data[:-1] for data in training_data]
#y_train = [data[-1] for data in training_data]
X_train = [data[:-1] for data in train_data_m]
y_train = [data[-1] for data in train_data_m]
#X_train = pd.get_dummies(data[:-1] for data in train_data_m)
#print(X_train)
#print(y_train)
# Create the decision tree classifier using the ID3 algorithm
clf = tree.DecisionTreeClassifier(criterion='entropy')
@ -28,11 +28,12 @@ clf = tree.DecisionTreeClassifier(criterion='entropy')
clf.fit(X_train, y_train)
# Visualize the trained decision tree
dot_data = tree.export_graphviz(clf, out_file=None, feature_names=['Attr1', 'Attr2', 'Attr3', 'Attr4', 'Attr5', 'Attr6', 'Attr7', 'Attr8'], class_names=['A', 'B'], filled=True)
dot_data = tree.export_graphviz(clf, out_file=None, feature_names=['Attr1', 'Attr2', 'Attr3', 'Attr4', 'Attr5', 'Attr6', 'Attr7'], class_names=['YES', 'NO'], filled=True)
graph = graphviz.Source(dot_data)
graph.render("decision_tree") # Save the visualization as a PDF file
# Test the decision tree with a new example
new_example = [1, 0, 0, 1, 1, 0, 0, 1] # Example with 8 attributes
#new_example = [1, 0, 0, 1, 1, 0, 0, 1] # Example with 8 attributes
new_example = [2, 0, 0, 1, 1 ,2, 1] # Example with 8 attributes
predicted_label = clf.predict([new_example])
print("Predicted Label:", predicted_label[0])

288
dataset.csv Normal file
View File

@ -0,0 +1,288 @@
3,1,1,1,1,3,1,0
3,1,1,1,1,3,0,0
3,1,1,1,1,2,1,0
3,1,1,1,1,2,0,0
3,1,1,1,1,1,1,0
3,1,1,1,1,1,0,0
3,1,1,1,0,3,1,0
3,1,1,1,0,3,0,0
3,1,1,1,0,2,1,0
3,1,1,1,0,2,0,0
3,1,1,1,0,1,1,0
3,1,1,1,0,1,0,0
3,1,1,0,1,3,1,0
3,1,1,0,1,3,0,0
3,1,1,0,1,2,1,0
3,1,1,0,1,2,0,0
3,1,1,0,1,1,1,0
3,1,1,0,1,1,0,0
3,1,1,0,0,3,1,0
3,1,1,0,0,3,0,0
3,1,1,0,0,2,1,0
3,1,1,0,0,2,0,0
3,1,1,0,0,1,1,0
3,1,1,0,0,1,0,0
3,1,0,1,1,3,1,0
3,1,0,1,1,3,0,0
3,1,0,1,1,2,1,0
3,1,0,1,1,2,0,0
3,1,0,1,1,1,1,0
3,1,0,1,1,1,0,0
3,1,0,1,0,3,1,0
3,1,0,1,0,3,0,0
3,1,0,1,0,2,1,0
3,1,0,1,0,2,0,0
3,1,0,1,0,1,1,0
3,1,0,1,0,1,0,0
3,1,0,0,1,3,1,0
3,1,0,0,1,3,0,0
3,1,0,0,1,2,1,0
3,1,0,0,1,2,0,0
3,1,0,0,1,1,1,0
3,1,0,0,1,1,0,0
3,1,0,0,0,3,1,0
3,1,0,0,0,3,0,0
3,1,0,0,0,2,1,0
3,1,0,0,0,2,0,0
3,1,0,0,0,1,1,0
3,1,0,0,0,1,0,0
3,0,1,1,1,3,1,0
3,0,1,1,1,3,0,0
3,0,1,1,1,2,1,0
3,0,1,1,1,2,0,0
3,0,1,1,1,1,1,0
3,0,1,1,1,1,0,0
3,0,1,1,0,3,1,0
3,0,1,1,0,3,0,0
3,0,1,1,0,2,1,0
3,0,1,1,0,2,0,0
3,0,1,1,0,1,1,0
3,0,1,1,0,1,0,0
3,0,1,0,1,3,1,0
3,0,1,0,1,3,0,0
3,0,1,0,1,2,1,0
3,0,1,0,1,2,0,0
3,0,1,0,1,1,1,0
3,0,1,0,1,1,0,0
3,0,1,0,0,3,1,0
3,0,1,0,0,3,0,0
3,0,1,0,0,2,1,0
3,0,1,0,0,2,0,0
3,0,1,0,0,1,1,0
3,0,1,0,0,1,0,0
3,0,0,1,1,3,1,0
3,0,0,1,1,3,0,0
3,0,0,1,1,2,1,0
3,0,0,1,1,2,0,1
3,0,0,1,1,1,1,0
3,0,0,1,1,1,0,1
3,0,0,1,0,3,1,0
3,0,0,1,0,3,0,0
3,0,0,1,0,2,1,0
3,0,0,1,0,2,0,0
3,0,0,1,0,1,1,0
3,0,0,1,0,1,0,0
3,0,0,0,1,3,1,0
3,0,0,0,1,3,0,0
3,0,0,0,1,2,1,0
3,0,0,0,1,2,0,1
3,0,0,0,1,1,1,0
3,0,0,0,1,1,0,1
3,0,0,0,0,3,1,0
3,0,0,0,0,3,0,0
3,0,0,0,0,2,1,1
3,0,0,0,0,2,0,1
3,0,0,0,0,1,1,1
3,0,0,0,0,1,0,1
2,1,1,1,1,3,1,0
2,1,1,1,1,3,0,0
2,1,1,1,1,2,1,0
2,1,1,1,1,2,0,0
2,1,1,1,1,1,1,0
2,1,1,1,1,1,0,0
2,1,1,1,0,3,1,0
2,1,1,1,0,3,0,0
2,1,1,1,0,2,1,0
2,1,1,1,0,2,0,0
2,1,1,1,0,1,1,0
2,1,1,1,0,1,0,0
2,1,1,0,1,3,1,0
2,1,1,0,1,3,0,0
2,1,1,0,1,2,1,0
2,1,1,0,1,2,0,0
2,1,1,0,1,1,1,0
2,1,1,0,1,1,0,0
2,1,1,0,0,3,1,0
2,1,1,0,0,3,0,0
2,1,1,0,0,2,1,0
2,1,1,0,0,2,0,0
2,1,1,0,0,1,1,0
2,1,1,0,0,1,0,0
2,1,0,1,1,3,1,0
2,1,0,1,1,3,0,0
2,1,0,1,1,2,1,0
2,1,0,1,1,2,0,0
2,1,0,1,1,1,1,0
2,1,0,1,1,1,0,0
2,1,0,1,0,3,1,0
2,1,0,1,0,3,0,0
2,1,0,1,0,2,1,0
2,1,0,1,0,2,0,0
2,1,0,1,0,1,1,0
2,1,0,1,0,1,0,0
2,1,0,0,1,3,1,0
2,1,0,0,1,3,0,0
2,1,0,0,1,2,1,0
2,1,0,0,1,2,0,0
2,1,0,0,1,1,1,0
2,1,0,0,1,1,0,0
2,1,0,0,0,3,1,0
2,1,0,0,0,3,0,0
2,1,0,0,0,2,1,0
2,1,0,0,0,2,0,0
2,1,0,0,0,1,1,0
2,1,0,0,0,1,0,0
2,0,1,1,1,3,1,0
2,0,1,1,1,3,0,0
2,0,1,1,1,2,1,0
2,0,1,1,1,2,0,0
2,0,1,1,1,1,1,0
2,0,1,1,1,1,0,0
2,0,1,1,0,3,1,0
2,0,1,1,0,3,0,0
2,0,1,1,0,2,1,0
2,0,1,1,0,2,0,0
2,0,1,1,0,1,1,0
2,0,1,1,0,1,0,0
2,0,1,0,1,3,1,0
2,0,1,0,1,3,0,0
2,0,1,0,1,2,1,0
2,0,1,0,1,2,0,0
2,0,1,0,1,1,1,0
2,0,1,0,1,1,0,0
2,0,1,0,0,3,1,0
2,0,1,0,0,3,0,0
2,0,1,0,0,2,1,0
2,0,1,0,0,2,0,0
2,0,1,0,0,1,1,0
2,0,1,0,0,1,0,0
2,0,0,1,1,3,1,0
2,0,0,1,1,3,0,0
2,0,0,1,1,2,1,0
2,0,0,1,1,2,0,1
2,0,0,1,1,1,1,0
2,0,0,1,1,1,0,1
2,0,0,1,0,3,1,0
2,0,0,1,0,3,0,0
2,0,0,1,0,2,1,0
2,0,0,1,0,2,0,0
2,0,0,1,0,1,1,0
2,0,0,1,0,1,0,0
2,0,0,0,1,3,1,0
2,0,0,0,1,3,0,0
2,0,0,0,1,2,1,0
2,0,0,0,1,2,0,1
2,0,0,0,1,1,1,0
2,0,0,0,1,1,0,1
2,0,0,0,0,3,1,0
2,0,0,0,0,3,0,0
2,0,0,0,0,2,1,1
2,0,0,0,0,2,0,1
2,0,0,0,0,1,1,1
2,0,0,0,0,1,0,1
1,1,1,1,1,3,1,0
1,1,1,1,1,3,0,0
1,1,1,1,1,2,1,0
1,1,1,1,1,2,0,0
1,1,1,1,1,1,1,0
1,1,1,1,1,1,0,0
1,1,1,1,0,3,1,0
1,1,1,1,0,3,0,0
1,1,1,1,0,2,1,0
1,1,1,1,0,2,0,0
1,1,1,1,0,1,1,0
1,1,1,1,0,1,0,0
1,1,1,0,1,3,1,0
1,1,1,0,1,3,0,0
1,1,1,0,1,2,1,0
1,1,1,0,1,2,0,0
1,1,1,0,1,1,1,0
1,1,1,0,1,1,0,0
1,1,1,0,0,3,1,0
1,1,1,0,0,3,0,0
1,1,1,0,0,2,1,0
1,1,1,0,0,2,0,0
1,1,1,0,0,1,1,0
1,1,1,0,0,1,0,0
1,1,0,1,1,3,1,0
1,1,0,1,1,3,0,0
1,1,0,1,1,2,1,0
1,1,0,1,1,2,0,0
1,1,0,1,1,1,1,0
1,1,0,1,1,1,0,0
1,1,0,1,0,3,1,0
1,1,0,1,0,3,0,0
1,1,0,1,0,2,1,0
1,1,0,1,0,2,0,0
1,1,0,1,0,1,1,0
1,1,0,1,0,1,0,0
1,1,0,0,1,3,1,0
1,1,0,0,1,3,0,0
1,1,0,0,1,2,1,0
1,1,0,0,1,2,0,0
1,1,0,0,1,1,1,0
1,1,0,0,1,1,0,0
1,1,0,0,0,3,1,0
1,1,0,0,0,3,0,0
1,1,0,0,0,2,1,0
1,1,0,0,0,2,0,0
1,1,0,0,0,1,1,0
1,1,0,0,0,1,0,0
1,0,1,1,1,3,1,0
1,0,1,1,1,3,0,0
1,0,1,1,1,2,1,0
1,0,1,1,1,2,0,0
1,0,1,1,1,1,1,0
1,0,1,1,1,1,0,0
1,0,1,1,0,3,1,0
1,0,1,1,0,3,0,0
1,0,1,1,0,2,1,0
1,0,1,1,0,2,0,0
1,0,1,1,0,1,1,0
1,0,1,1,0,1,0,0
1,0,1,0,1,3,1,0
1,0,1,0,1,3,0,0
1,0,1,0,1,2,1,0
1,0,1,0,1,2,0,0
1,0,1,0,1,1,1,0
1,0,1,0,1,1,0,0
1,0,1,0,0,3,1,0
1,0,1,0,0,3,0,0
1,0,1,0,0,2,1,0
1,0,1,0,0,2,0,0
1,0,1,0,0,1,1,0
1,0,1,0,0,1,0,0
1,0,0,1,1,3,1,0
1,0,0,1,1,3,0,0
1,0,0,1,1,2,1,0
1,0,0,1,1,2,0,0
1,0,0,1,1,1,1,0
1,0,0,1,1,1,0,0
1,0,0,1,0,3,1,0
1,0,0,1,0,3,0,0
1,0,0,1,0,2,1,0
1,0,0,1,0,2,0,0
1,0,0,1,0,1,1,0
1,0,0,1,0,1,0,0
1,0,0,0,1,3,1,0
1,0,0,0,1,3,0,0
1,0,0,0,1,2,1,0
1,0,0,0,1,2,0,0
1,0,0,0,1,1,1,0
1,0,0,0,1,1,0,0
1,0,0,0,0,3,1,0
1,0,0,0,0,3,0,0
1,0,0,0,0,2,1,0
1,0,0,0,0,2,0,0
1,0,0,0,0,1,1,0
1,0,0,0,0,1,0,0
1 3 1 1 1 1 3 1 0
2 3 1 1 1 1 3 0 0
3 3 1 1 1 1 2 1 0
4 3 1 1 1 1 2 0 0
5 3 1 1 1 1 1 1 0
6 3 1 1 1 1 1 0 0
7 3 1 1 1 0 3 1 0
8 3 1 1 1 0 3 0 0
9 3 1 1 1 0 2 1 0
10 3 1 1 1 0 2 0 0
11 3 1 1 1 0 1 1 0
12 3 1 1 1 0 1 0 0
13 3 1 1 0 1 3 1 0
14 3 1 1 0 1 3 0 0
15 3 1 1 0 1 2 1 0
16 3 1 1 0 1 2 0 0
17 3 1 1 0 1 1 1 0
18 3 1 1 0 1 1 0 0
19 3 1 1 0 0 3 1 0
20 3 1 1 0 0 3 0 0
21 3 1 1 0 0 2 1 0
22 3 1 1 0 0 2 0 0
23 3 1 1 0 0 1 1 0
24 3 1 1 0 0 1 0 0
25 3 1 0 1 1 3 1 0
26 3 1 0 1 1 3 0 0
27 3 1 0 1 1 2 1 0
28 3 1 0 1 1 2 0 0
29 3 1 0 1 1 1 1 0
30 3 1 0 1 1 1 0 0
31 3 1 0 1 0 3 1 0
32 3 1 0 1 0 3 0 0
33 3 1 0 1 0 2 1 0
34 3 1 0 1 0 2 0 0
35 3 1 0 1 0 1 1 0
36 3 1 0 1 0 1 0 0
37 3 1 0 0 1 3 1 0
38 3 1 0 0 1 3 0 0
39 3 1 0 0 1 2 1 0
40 3 1 0 0 1 2 0 0
41 3 1 0 0 1 1 1 0
42 3 1 0 0 1 1 0 0
43 3 1 0 0 0 3 1 0
44 3 1 0 0 0 3 0 0
45 3 1 0 0 0 2 1 0
46 3 1 0 0 0 2 0 0
47 3 1 0 0 0 1 1 0
48 3 1 0 0 0 1 0 0
49 3 0 1 1 1 3 1 0
50 3 0 1 1 1 3 0 0
51 3 0 1 1 1 2 1 0
52 3 0 1 1 1 2 0 0
53 3 0 1 1 1 1 1 0
54 3 0 1 1 1 1 0 0
55 3 0 1 1 0 3 1 0
56 3 0 1 1 0 3 0 0
57 3 0 1 1 0 2 1 0
58 3 0 1 1 0 2 0 0
59 3 0 1 1 0 1 1 0
60 3 0 1 1 0 1 0 0
61 3 0 1 0 1 3 1 0
62 3 0 1 0 1 3 0 0
63 3 0 1 0 1 2 1 0
64 3 0 1 0 1 2 0 0
65 3 0 1 0 1 1 1 0
66 3 0 1 0 1 1 0 0
67 3 0 1 0 0 3 1 0
68 3 0 1 0 0 3 0 0
69 3 0 1 0 0 2 1 0
70 3 0 1 0 0 2 0 0
71 3 0 1 0 0 1 1 0
72 3 0 1 0 0 1 0 0
73 3 0 0 1 1 3 1 0
74 3 0 0 1 1 3 0 0
75 3 0 0 1 1 2 1 0
76 3 0 0 1 1 2 0 1
77 3 0 0 1 1 1 1 0
78 3 0 0 1 1 1 0 1
79 3 0 0 1 0 3 1 0
80 3 0 0 1 0 3 0 0
81 3 0 0 1 0 2 1 0
82 3 0 0 1 0 2 0 0
83 3 0 0 1 0 1 1 0
84 3 0 0 1 0 1 0 0
85 3 0 0 0 1 3 1 0
86 3 0 0 0 1 3 0 0
87 3 0 0 0 1 2 1 0
88 3 0 0 0 1 2 0 1
89 3 0 0 0 1 1 1 0
90 3 0 0 0 1 1 0 1
91 3 0 0 0 0 3 1 0
92 3 0 0 0 0 3 0 0
93 3 0 0 0 0 2 1 1
94 3 0 0 0 0 2 0 1
95 3 0 0 0 0 1 1 1
96 3 0 0 0 0 1 0 1
97 2 1 1 1 1 3 1 0
98 2 1 1 1 1 3 0 0
99 2 1 1 1 1 2 1 0
100 2 1 1 1 1 2 0 0
101 2 1 1 1 1 1 1 0
102 2 1 1 1 1 1 0 0
103 2 1 1 1 0 3 1 0
104 2 1 1 1 0 3 0 0
105 2 1 1 1 0 2 1 0
106 2 1 1 1 0 2 0 0
107 2 1 1 1 0 1 1 0
108 2 1 1 1 0 1 0 0
109 2 1 1 0 1 3 1 0
110 2 1 1 0 1 3 0 0
111 2 1 1 0 1 2 1 0
112 2 1 1 0 1 2 0 0
113 2 1 1 0 1 1 1 0
114 2 1 1 0 1 1 0 0
115 2 1 1 0 0 3 1 0
116 2 1 1 0 0 3 0 0
117 2 1 1 0 0 2 1 0
118 2 1 1 0 0 2 0 0
119 2 1 1 0 0 1 1 0
120 2 1 1 0 0 1 0 0
121 2 1 0 1 1 3 1 0
122 2 1 0 1 1 3 0 0
123 2 1 0 1 1 2 1 0
124 2 1 0 1 1 2 0 0
125 2 1 0 1 1 1 1 0
126 2 1 0 1 1 1 0 0
127 2 1 0 1 0 3 1 0
128 2 1 0 1 0 3 0 0
129 2 1 0 1 0 2 1 0
130 2 1 0 1 0 2 0 0
131 2 1 0 1 0 1 1 0
132 2 1 0 1 0 1 0 0
133 2 1 0 0 1 3 1 0
134 2 1 0 0 1 3 0 0
135 2 1 0 0 1 2 1 0
136 2 1 0 0 1 2 0 0
137 2 1 0 0 1 1 1 0
138 2 1 0 0 1 1 0 0
139 2 1 0 0 0 3 1 0
140 2 1 0 0 0 3 0 0
141 2 1 0 0 0 2 1 0
142 2 1 0 0 0 2 0 0
143 2 1 0 0 0 1 1 0
144 2 1 0 0 0 1 0 0
145 2 0 1 1 1 3 1 0
146 2 0 1 1 1 3 0 0
147 2 0 1 1 1 2 1 0
148 2 0 1 1 1 2 0 0
149 2 0 1 1 1 1 1 0
150 2 0 1 1 1 1 0 0
151 2 0 1 1 0 3 1 0
152 2 0 1 1 0 3 0 0
153 2 0 1 1 0 2 1 0
154 2 0 1 1 0 2 0 0
155 2 0 1 1 0 1 1 0
156 2 0 1 1 0 1 0 0
157 2 0 1 0 1 3 1 0
158 2 0 1 0 1 3 0 0
159 2 0 1 0 1 2 1 0
160 2 0 1 0 1 2 0 0
161 2 0 1 0 1 1 1 0
162 2 0 1 0 1 1 0 0
163 2 0 1 0 0 3 1 0
164 2 0 1 0 0 3 0 0
165 2 0 1 0 0 2 1 0
166 2 0 1 0 0 2 0 0
167 2 0 1 0 0 1 1 0
168 2 0 1 0 0 1 0 0
169 2 0 0 1 1 3 1 0
170 2 0 0 1 1 3 0 0
171 2 0 0 1 1 2 1 0
172 2 0 0 1 1 2 0 1
173 2 0 0 1 1 1 1 0
174 2 0 0 1 1 1 0 1
175 2 0 0 1 0 3 1 0
176 2 0 0 1 0 3 0 0
177 2 0 0 1 0 2 1 0
178 2 0 0 1 0 2 0 0
179 2 0 0 1 0 1 1 0
180 2 0 0 1 0 1 0 0
181 2 0 0 0 1 3 1 0
182 2 0 0 0 1 3 0 0
183 2 0 0 0 1 2 1 0
184 2 0 0 0 1 2 0 1
185 2 0 0 0 1 1 1 0
186 2 0 0 0 1 1 0 1
187 2 0 0 0 0 3 1 0
188 2 0 0 0 0 3 0 0
189 2 0 0 0 0 2 1 1
190 2 0 0 0 0 2 0 1
191 2 0 0 0 0 1 1 1
192 2 0 0 0 0 1 0 1
193 1 1 1 1 1 3 1 0
194 1 1 1 1 1 3 0 0
195 1 1 1 1 1 2 1 0
196 1 1 1 1 1 2 0 0
197 1 1 1 1 1 1 1 0
198 1 1 1 1 1 1 0 0
199 1 1 1 1 0 3 1 0
200 1 1 1 1 0 3 0 0
201 1 1 1 1 0 2 1 0
202 1 1 1 1 0 2 0 0
203 1 1 1 1 0 1 1 0
204 1 1 1 1 0 1 0 0
205 1 1 1 0 1 3 1 0
206 1 1 1 0 1 3 0 0
207 1 1 1 0 1 2 1 0
208 1 1 1 0 1 2 0 0
209 1 1 1 0 1 1 1 0
210 1 1 1 0 1 1 0 0
211 1 1 1 0 0 3 1 0
212 1 1 1 0 0 3 0 0
213 1 1 1 0 0 2 1 0
214 1 1 1 0 0 2 0 0
215 1 1 1 0 0 1 1 0
216 1 1 1 0 0 1 0 0
217 1 1 0 1 1 3 1 0
218 1 1 0 1 1 3 0 0
219 1 1 0 1 1 2 1 0
220 1 1 0 1 1 2 0 0
221 1 1 0 1 1 1 1 0
222 1 1 0 1 1 1 0 0
223 1 1 0 1 0 3 1 0
224 1 1 0 1 0 3 0 0
225 1 1 0 1 0 2 1 0
226 1 1 0 1 0 2 0 0
227 1 1 0 1 0 1 1 0
228 1 1 0 1 0 1 0 0
229 1 1 0 0 1 3 1 0
230 1 1 0 0 1 3 0 0
231 1 1 0 0 1 2 1 0
232 1 1 0 0 1 2 0 0
233 1 1 0 0 1 1 1 0
234 1 1 0 0 1 1 0 0
235 1 1 0 0 0 3 1 0
236 1 1 0 0 0 3 0 0
237 1 1 0 0 0 2 1 0
238 1 1 0 0 0 2 0 0
239 1 1 0 0 0 1 1 0
240 1 1 0 0 0 1 0 0
241 1 0 1 1 1 3 1 0
242 1 0 1 1 1 3 0 0
243 1 0 1 1 1 2 1 0
244 1 0 1 1 1 2 0 0
245 1 0 1 1 1 1 1 0
246 1 0 1 1 1 1 0 0
247 1 0 1 1 0 3 1 0
248 1 0 1 1 0 3 0 0
249 1 0 1 1 0 2 1 0
250 1 0 1 1 0 2 0 0
251 1 0 1 1 0 1 1 0
252 1 0 1 1 0 1 0 0
253 1 0 1 0 1 3 1 0
254 1 0 1 0 1 3 0 0
255 1 0 1 0 1 2 1 0
256 1 0 1 0 1 2 0 0
257 1 0 1 0 1 1 1 0
258 1 0 1 0 1 1 0 0
259 1 0 1 0 0 3 1 0
260 1 0 1 0 0 3 0 0
261 1 0 1 0 0 2 1 0
262 1 0 1 0 0 2 0 0
263 1 0 1 0 0 1 1 0
264 1 0 1 0 0 1 0 0
265 1 0 0 1 1 3 1 0
266 1 0 0 1 1 3 0 0
267 1 0 0 1 1 2 1 0
268 1 0 0 1 1 2 0 0
269 1 0 0 1 1 1 1 0
270 1 0 0 1 1 1 0 0
271 1 0 0 1 0 3 1 0
272 1 0 0 1 0 3 0 0
273 1 0 0 1 0 2 1 0
274 1 0 0 1 0 2 0 0
275 1 0 0 1 0 1 1 0
276 1 0 0 1 0 1 0 0
277 1 0 0 0 1 3 1 0
278 1 0 0 0 1 3 0 0
279 1 0 0 0 1 2 1 0
280 1 0 0 0 1 2 0 0
281 1 0 0 0 1 1 1 0
282 1 0 0 0 1 1 0 0
283 1 0 0 0 0 3 1 0
284 1 0 0 0 0 3 0 0
285 1 0 0 0 0 2 1 0
286 1 0 0 0 0 2 0 0
287 1 0 0 0 0 1 1 0
288 1 0 0 0 0 1 0 0