alt_dataset #1
25
1.py
25
1.py
@ -1,25 +0,0 @@
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn import metrics
|
||||
|
||||
# Load the Iris dataset (or you can use your own dataset)
|
||||
iris = load_iris()
|
||||
X = iris.data
|
||||
y = iris.target
|
||||
|
||||
# Split the dataset into training and testing sets
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# Create an instance of the DecisionTreeClassifier
|
||||
clf = DecisionTreeClassifier()
|
||||
|
||||
# Train the decision tree classifier
|
||||
clf.fit(X_train, y_train)
|
||||
|
||||
# Make predictions on the testing set
|
||||
y_pred = clf.predict(X_test)
|
||||
|
||||
# Evaluate the accuracy of the model
|
||||
accuracy = metrics.accuracy_score(y_test, y_pred)
|
||||
print("Accuracy:", accuracy)
|
30
TreeConcept.py
Normal file
30
TreeConcept.py
Normal file
@ -0,0 +1,30 @@
|
||||
from sklearn import tree
|
||||
|
||||
# Define the training dataset with 8 attributes and corresponding labels
|
||||
training_data = [
|
||||
[1, 0, 0, 1, 0, 1, 1, 'A'],
|
||||
[1, 0, 0, 0, 1, 1, 1, 'A'],
|
||||
[0, 1, 0, 1, 0, 1, 1, 'B'],
|
||||
[0, 0, 0, 1, 0, 0, 1, 'B'],
|
||||
[0, 1, 1, 0, 1, 0, 0, 'B'],
|
||||
[1, 0, 0, 0, 1, 0, 1, 'A'],
|
||||
[0, 0, 0, 1, 0, 0, 0, 'B'],
|
||||
[1, 1, 0, 1, 1, 1, 0, 'A'],
|
||||
[0, 0, 0, 0, 0, 0, 1, 'B'],
|
||||
[0, 0, 1, 0, 0, 1, 0, 'B']
|
||||
]
|
||||
|
||||
# Separate the attributes and labels
|
||||
X_train = [data[:-1] for data in training_data]
|
||||
y_train = [data[-1] for data in training_data]
|
||||
|
||||
# Create the decision tree classifier using the ID3 algorithm
|
||||
clf = tree.DecisionTreeClassifier(criterion='entropy')
|
||||
|
||||
# Train the decision tree on the training data
|
||||
clf.fit(X_train, y_train)
|
||||
|
||||
# Test the decision tree with a new example
|
||||
new_example = [1, 0, 0, 1, 1, 0, 0] # Example with 8 attributes
|
||||
predicted_label = clf.predict([new_example])
|
||||
print("Predicted Label:", predicted_label[0])
|
Loading…
Reference in New Issue
Block a user