alt_dataset #1
25
1.py
Normal file
25
1.py
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
from sklearn.datasets import load_iris
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn import metrics
|
||||||
|
|
||||||
|
# Load the Iris dataset (or you can use your own dataset)
|
||||||
|
iris = load_iris()
|
||||||
|
X = iris.data
|
||||||
|
y = iris.target
|
||||||
|
|
||||||
|
# Split the dataset into training and testing sets
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||||
|
|
||||||
|
# Create an instance of the DecisionTreeClassifier
|
||||||
|
clf = DecisionTreeClassifier()
|
||||||
|
|
||||||
|
# Train the decision tree classifier
|
||||||
|
clf.fit(X_train, y_train)
|
||||||
|
|
||||||
|
# Make predictions on the testing set
|
||||||
|
y_pred = clf.predict(X_test)
|
||||||
|
|
||||||
|
# Evaluate the accuracy of the model
|
||||||
|
accuracy = metrics.accuracy_score(y_test, y_pred)
|
||||||
|
print("Accuracy:", accuracy)
|
Loading…
Reference in New Issue
Block a user