alt_dataset #1
@ -1,17 +1,20 @@
|
|||||||
from sklearn import tree
|
from sklearn import tree
|
||||||
|
import graphviz
|
||||||
|
import os
|
||||||
|
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz/bin/'
|
||||||
|
|
||||||
# Define the training dataset with 8 attributes and corresponding labels
|
# Define the training dataset with 8 attributes and corresponding labels
|
||||||
training_data = [
|
training_data = [
|
||||||
[1, 0, 0, 1, 0, 1, 1, 'A'],
|
[0, 0, 0, 1, 0, 1, 1, 0, 'A'],
|
||||||
[1, 0, 0, 0, 1, 1, 1, 'A'],
|
[1, 0, 0, 0, 1, 1, 1, 1, 'A'],
|
||||||
[0, 1, 0, 1, 0, 1, 1, 'B'],
|
[0, 1, 0, 1, 0, 1, 1, 1, 'B'],
|
||||||
[0, 0, 0, 1, 0, 0, 1, 'B'],
|
[1, 0, 0, 1, 1, 0, 1, 0, 'B'],
|
||||||
[0, 1, 1, 0, 1, 0, 0, 'B'],
|
[1, 1, 1, 0, 1, 0, 0, 1, 'B'],
|
||||||
[1, 0, 0, 0, 1, 0, 1, 'A'],
|
[0, 0, 0, 0, 1, 1, 1, 0, 'A'],
|
||||||
[0, 0, 0, 1, 0, 0, 0, 'B'],
|
[0, 0, 0, 1, 0, 0, 0, 0, 'B'],
|
||||||
[1, 1, 0, 1, 1, 1, 0, 'A'],
|
[1, 1, 0, 1, 1, 1, 0, 1, 'A'],
|
||||||
[0, 0, 0, 0, 0, 0, 1, 'B'],
|
[0, 0, 0, 0, 0, 0, 1, 1, 'B'],
|
||||||
[0, 0, 1, 0, 0, 1, 0, 'B']
|
[1, 0, 1, 0, 0, 1, 0, 0, 'B']
|
||||||
]
|
]
|
||||||
|
|
||||||
# Separate the attributes and labels
|
# Separate the attributes and labels
|
||||||
@ -24,7 +27,12 @@ clf = tree.DecisionTreeClassifier(criterion='entropy')
|
|||||||
# Train the decision tree on the training data
|
# Train the decision tree on the training data
|
||||||
clf.fit(X_train, y_train)
|
clf.fit(X_train, y_train)
|
||||||
|
|
||||||
|
# Visualize the trained decision tree
|
||||||
|
dot_data = tree.export_graphviz(clf, out_file=None, feature_names=['Attr1', 'Attr2', 'Attr3', 'Attr4', 'Attr5', 'Attr6', 'Attr7', 'Attr8'], class_names=['A', 'B'], filled=True)
|
||||||
|
graph = graphviz.Source(dot_data)
|
||||||
|
graph.render("decision_tree") # Save the visualization as a PDF file
|
||||||
|
|
||||||
# Test the decision tree with a new example
|
# Test the decision tree with a new example
|
||||||
new_example = [1, 0, 0, 1, 1, 0, 0] # Example with 8 attributes
|
new_example = [1, 0, 0, 1, 1, 0, 0, 1] # Example with 8 attributes
|
||||||
predicted_label = clf.predict([new_example])
|
predicted_label = clf.predict([new_example])
|
||||||
print("Predicted Label:", predicted_label[0])
|
print("Predicted Label:", predicted_label[0])
|
Loading…
Reference in New Issue
Block a user