import tensorflow as tf from keras import layers from keras.models import Sequential from keras.optimizers import Adam from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator import os import PIL import PIL.Image import numpy # Set the paths to the folders containing the training data train_data_dir = "Training/" validation_data_dir = "Validation/" # Set the number of classes and batch size num_classes = 3 batch_size = 32 # Set the image size and input shape img_width, img_height = 100, 100 input_shape = (img_width, img_height, 3) train_ds = tf.keras.utils.image_dataset_from_directory( train_data_dir, validation_split=0.2, subset="training", shuffle=True, seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.utils.image_dataset_from_directory( train_data_dir, validation_split=0.2, subset="validation", shuffle=True, seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print(class_names)