import os import numpy as np import tensorflow as tf from tensorflow import keras # Load the trained model model = keras.models.load_model('Network/trained_model.h5') # Load the class names class_names = ['Table', 'Done','Order'] # Path to the folder containing test images test_images_folder = 'Network/Testing/' # Iterate over the test images i = 0 errorcount = 0 for folder_name in os.listdir(test_images_folder): folder_path = os.path.join(test_images_folder, folder_name) if os.path.isdir(folder_path): print('Testing images in folder:', folder_name) # True class based on folder name if folder_name == 'Empty': true_class = 'Table' elif folder_name == 'Food': true_class = 'Done' elif folder_name == 'People': true_class = 'Order' # Iterate over the files in the subfolder for filename in os.listdir(folder_path): if filename.endswith('.jpg') or filename.endswith('.jpeg'): i+=1 # Load and preprocess the test image image_path = os.path.join(folder_path, filename) test_image = keras.preprocessing.image.load_img(image_path, target_size=(100, 100)) test_image = keras.preprocessing.image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis=0) test_image = test_image / 255.0 # Normalize the image # Reshape the image array to (1, height, width, channels) test_image = np.reshape(test_image, (1,100, 100, 3)) # Make predictions predictions = model.predict(test_image) predicted_class_index = np.argmax(predictions[0]) predicted_class = class_names[predicted_class_index] direct = 'Network/Results/' filename = str(i) + predicted_class + '.jpeg' test_image = np.reshape(test_image, (100, 100, 3)) tf.keras.preprocessing.image.save_img(direct+filename, test_image) if predicted_class != true_class: errorcount += 1 print('Image:', filename) print('True class:', true_class) print('Predicted class:', predicted_class) print() print('Error count: ', errorcount)