from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics # Load the Iris dataset (or you can use your own dataset) iris = load_iris() X = iris.data y = iris.target # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create an instance of the DecisionTreeClassifier clf = DecisionTreeClassifier() # Train the decision tree classifier clf.fit(X_train, y_train) # Make predictions on the testing set y_pred = clf.predict(X_test) # Evaluate the accuracy of the model accuracy = metrics.accuracy_score(y_test, y_pred) print("Accuracy:", accuracy)