import tensorflow as tf from keras import layers # Normalizes the pixel values of an image to the range [0, 1]. def normalize(image, label): return image / 255, label # Set the paths to the folder containing the training data train_data_dir = "Network/Training/" # Set the number of classes and batch size num_classes = 3 batch_size = 32 # Set the image size and input shape img_width, img_height = 100, 100 input_shape = (img_width, img_height, 1) # Load the training and validation data train_ds = tf.keras.utils.image_dataset_from_directory( train_data_dir, validation_split=0.2, subset="training", shuffle=True, seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.utils.image_dataset_from_directory( train_data_dir, validation_split=0.2, subset="validation", shuffle=True, seed=123, image_size=(img_height, img_width), batch_size=batch_size) # Get the class names class_names = train_ds.class_names print(class_names) # Normalize the training and validation data train_ds = train_ds.map(normalize) val_ds = val_ds.map(normalize) # Define the model architecture model = tf.keras.Sequential([ layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(img_height, img_width, 1)), layers.MaxPooling2D(), layers.Conv2D(32, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(64, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(num_classes, activation='softmax') ]) # Compile the model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True), metrics=['accuracy']) # Print the model summary model.summary() # Train the model epochs = 10 model.fit(train_ds, validation_data=val_ds, epochs=epochs) # Save the trained model model.save('Network/trained_model.h5')