45 lines
1.0 KiB
Python
45 lines
1.0 KiB
Python
import tensorflow as tf
|
|
from keras import layers
|
|
from keras.models import Sequential
|
|
from keras.optimizers import Adam
|
|
from keras.utils import to_categorical
|
|
from keras.preprocessing.image import ImageDataGenerator
|
|
import os
|
|
import PIL
|
|
import PIL.Image
|
|
import numpy
|
|
|
|
# Set the paths to the folders containing the training data
|
|
train_data_dir = "Training/"
|
|
validation_data_dir = "Validation/"
|
|
|
|
|
|
# Set the number of classes and batch size
|
|
num_classes = 3
|
|
batch_size = 32
|
|
|
|
# Set the image size and input shape
|
|
img_width, img_height = 100, 100
|
|
input_shape = (img_width, img_height, 3)
|
|
|
|
train_ds = tf.keras.utils.image_dataset_from_directory(
|
|
train_data_dir,
|
|
validation_split=0.2,
|
|
subset="training",
|
|
shuffle=True,
|
|
seed=123,
|
|
image_size=(img_height, img_width),
|
|
batch_size=batch_size)
|
|
|
|
val_ds = tf.keras.utils.image_dataset_from_directory(
|
|
train_data_dir,
|
|
validation_split=0.2,
|
|
subset="validation",
|
|
shuffle=True,
|
|
seed=123,
|
|
image_size=(img_height, img_width),
|
|
batch_size=batch_size)
|
|
|
|
class_names = train_ds.class_names
|
|
print(class_names)
|