57 lines
1.6 KiB
Python
57 lines
1.6 KiB
Python
import os
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow import keras
|
|
|
|
# Load the trained model
|
|
model = keras.models.load_model('Network/trained_model.h5')
|
|
|
|
# Load the class names
|
|
class_names = ['Table', 'Done','Order']
|
|
|
|
# Load and preprocess the validation dataset
|
|
data_dir = "Network/Training/"
|
|
image_size = (100, 100)
|
|
batch_size = 32
|
|
|
|
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
data_dir,
|
|
validation_split=0.2,
|
|
subset="validation",
|
|
seed=123,
|
|
image_size=image_size,
|
|
batch_size=batch_size,
|
|
)
|
|
|
|
# Select 20 random images from the validation set
|
|
val_images = []
|
|
val_labels = []
|
|
for images, labels in val_ds.unbatch().shuffle(1000).take(60):
|
|
val_images.append(images)
|
|
val_labels.append(labels)
|
|
|
|
# Make predictions on the random images
|
|
errorcount = 0
|
|
for i in range(60):
|
|
test_image = val_images[i]
|
|
test_label = val_labels[i]
|
|
test_image = np.expand_dims(test_image, axis=0)
|
|
test_image = test_image / 255.0 # Normalize the image
|
|
|
|
# Make predictions
|
|
predictions = model.predict(test_image)
|
|
predicted_class_index = np.argmax(predictions[0])
|
|
predicted_class = class_names[predicted_class_index]
|
|
|
|
true_class = class_names[test_label]
|
|
|
|
direct = 'Network/Results/'
|
|
filename = predicted_class + str(i) + '.jpeg'
|
|
tf.keras.preprocessing.image.save_img(direct+filename, val_images[i])
|
|
if predicted_class != true_class:
|
|
errorcount += 1
|
|
print('Image', i+1)
|
|
print('True class:', true_class)
|
|
print('Predicted class:', predicted_class)
|
|
print()
|
|
print('Error count: ', errorcount) |