Traktor/myenv/Lib/site-packages/fontTools/qu2cu/qu2cu.py

409 lines
12 KiB
Python
Raw Permalink Normal View History

2024-05-23 01:57:24 +02:00
# cython: language_level=3
# distutils: define_macros=CYTHON_TRACE_NOGIL=1
# Copyright 2023 Google Inc. All Rights Reserved.
# Copyright 2023 Behdad Esfahbod. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cython
COMPILED = cython.compiled
except (AttributeError, ImportError):
# if cython not installed, use mock module with no-op decorators and types
from fontTools.misc import cython
COMPILED = False
from fontTools.misc.bezierTools import splitCubicAtTC
from collections import namedtuple
import math
from typing import (
List,
Tuple,
Union,
)
__all__ = ["quadratic_to_curves"]
# Copied from cu2qu
@cython.cfunc
@cython.returns(cython.int)
@cython.locals(
tolerance=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
@cython.locals(mid=cython.complex, deriv3=cython.complex)
def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
"""Check if a cubic Bezier lies within a given distance of the origin.
"Origin" means *the* origin (0,0), not the start of the curve. Note that no
checks are made on the start and end positions of the curve; this function
only checks the inside of the curve.
Args:
p0 (complex): Start point of curve.
p1 (complex): First handle of curve.
p2 (complex): Second handle of curve.
p3 (complex): End point of curve.
tolerance (double): Distance from origin.
Returns:
bool: True if the cubic Bezier ``p`` entirely lies within a distance
``tolerance`` of the origin, False otherwise.
"""
# First check p2 then p1, as p2 has higher error early on.
if abs(p2) <= tolerance and abs(p1) <= tolerance:
return True
# Split.
mid = (p0 + 3 * (p1 + p2) + p3) * 0.125
if abs(mid) > tolerance:
return False
deriv3 = (p3 + p2 - p1 - p0) * 0.125
return cubic_farthest_fit_inside(
p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance
) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance)
@cython.locals(
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p1_2_3=cython.complex,
)
def elevate_quadratic(p0, p1, p2):
"""Given a quadratic bezier curve, return its degree-elevated cubic."""
# https://pomax.github.io/bezierinfo/#reordering
p1_2_3 = p1 * (2 / 3)
return (
p0,
(p0 * (1 / 3) + p1_2_3),
(p2 * (1 / 3) + p1_2_3),
p2,
)
@cython.cfunc
@cython.locals(
start=cython.int,
n=cython.int,
k=cython.int,
prod_ratio=cython.double,
sum_ratio=cython.double,
ratio=cython.double,
t=cython.double,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
)
def merge_curves(curves, start, n):
"""Give a cubic-Bezier spline, reconstruct one cubic-Bezier
that has the same endpoints and tangents and approxmates
the spline."""
# Reconstruct the t values of the cut segments
prod_ratio = 1.0
sum_ratio = 1.0
ts = [1]
for k in range(1, n):
ck = curves[start + k]
c_before = curves[start + k - 1]
# |t_(k+1) - t_k| / |t_k - t_(k - 1)| = ratio
assert ck[0] == c_before[3]
ratio = abs(ck[1] - ck[0]) / abs(c_before[3] - c_before[2])
prod_ratio *= ratio
sum_ratio += prod_ratio
ts.append(sum_ratio)
# (t(n) - t(n - 1)) / (t_(1) - t(0)) = prod_ratio
ts = [t / sum_ratio for t in ts[:-1]]
p0 = curves[start][0]
p1 = curves[start][1]
p2 = curves[start + n - 1][2]
p3 = curves[start + n - 1][3]
# Build the curve by scaling the control-points.
p1 = p0 + (p1 - p0) / (ts[0] if ts else 1)
p2 = p3 + (p2 - p3) / ((1 - ts[-1]) if ts else 1)
curve = (p0, p1, p2, p3)
return curve, ts
@cython.locals(
count=cython.int,
num_offcurves=cython.int,
i=cython.int,
off1=cython.complex,
off2=cython.complex,
on=cython.complex,
)
def add_implicit_on_curves(p):
q = list(p)
count = 0
num_offcurves = len(p) - 2
for i in range(1, num_offcurves):
off1 = p[i]
off2 = p[i + 1]
on = off1 + (off2 - off1) * 0.5
q.insert(i + 1 + count, on)
count += 1
return q
Point = Union[Tuple[float, float], complex]
@cython.locals(
cost=cython.int,
is_complex=cython.int,
)
def quadratic_to_curves(
quads: List[List[Point]],
max_err: float = 0.5,
all_cubic: bool = False,
) -> List[Tuple[Point, ...]]:
"""Converts a connecting list of quadratic splines to a list of quadratic
and cubic curves.
A quadratic spline is specified as a list of points. Either each point is
a 2-tuple of X,Y coordinates, or each point is a complex number with
real/imaginary components representing X,Y coordinates.
The first and last points are on-curve points and the rest are off-curve
points, with an implied on-curve point in the middle between every two
consequtive off-curve points.
Returns:
The output is a list of tuples of points. Points are represented
in the same format as the input, either as 2-tuples or complex numbers.
Each tuple is either of length three, for a quadratic curve, or four,
for a cubic curve. Each curve's last point is the same as the next
curve's first point.
Args:
quads: quadratic splines
max_err: absolute error tolerance; defaults to 0.5
all_cubic: if True, only cubic curves are generated; defaults to False
"""
is_complex = type(quads[0][0]) is complex
if not is_complex:
quads = [[complex(x, y) for (x, y) in p] for p in quads]
q = [quads[0][0]]
costs = [1]
cost = 1
for p in quads:
assert q[-1] == p[0]
for i in range(len(p) - 2):
cost += 1
costs.append(cost)
costs.append(cost)
qq = add_implicit_on_curves(p)[1:]
costs.pop()
q.extend(qq)
cost += 1
costs.append(cost)
curves = spline_to_curves(q, costs, max_err, all_cubic)
if not is_complex:
curves = [tuple((c.real, c.imag) for c in curve) for curve in curves]
return curves
Solution = namedtuple("Solution", ["num_points", "error", "start_index", "is_cubic"])
@cython.locals(
i=cython.int,
j=cython.int,
k=cython.int,
start=cython.int,
i_sol_count=cython.int,
j_sol_count=cython.int,
this_sol_count=cython.int,
tolerance=cython.double,
err=cython.double,
error=cython.double,
i_sol_error=cython.double,
j_sol_error=cython.double,
all_cubic=cython.int,
is_cubic=cython.int,
count=cython.int,
p0=cython.complex,
p1=cython.complex,
p2=cython.complex,
p3=cython.complex,
v=cython.complex,
u=cython.complex,
)
def spline_to_curves(q, costs, tolerance=0.5, all_cubic=False):
"""
q: quadratic spline with alternating on-curve / off-curve points.
costs: cumulative list of encoding cost of q in terms of number of
points that need to be encoded. Implied on-curve points do not
contribute to the cost. If all points need to be encoded, then
costs will be range(1, len(q)+1).
"""
assert len(q) >= 3, "quadratic spline requires at least 3 points"
# Elevate quadratic segments to cubic
elevated_quadratics = [
elevate_quadratic(*q[i : i + 3]) for i in range(0, len(q) - 2, 2)
]
# Find sharp corners; they have to be oncurves for sure.
forced = set()
for i in range(1, len(elevated_quadratics)):
p0 = elevated_quadratics[i - 1][2]
p1 = elevated_quadratics[i][0]
p2 = elevated_quadratics[i][1]
if abs(p1 - p0) + abs(p2 - p1) > tolerance + abs(p2 - p0):
forced.add(i)
# Dynamic-Programming to find the solution with fewest number of
# cubic curves, and within those the one with smallest error.
sols = [Solution(0, 0, 0, False)]
impossible = Solution(len(elevated_quadratics) * 3 + 1, 0, 1, False)
start = 0
for i in range(1, len(elevated_quadratics) + 1):
best_sol = impossible
for j in range(start, i):
j_sol_count, j_sol_error = sols[j].num_points, sols[j].error
if not all_cubic:
# Solution with quadratics between j:i
this_count = costs[2 * i - 1] - costs[2 * j] + 1
i_sol_count = j_sol_count + this_count
i_sol_error = j_sol_error
i_sol = Solution(i_sol_count, i_sol_error, i - j, False)
if i_sol < best_sol:
best_sol = i_sol
if this_count <= 3:
# Can't get any better than this in the path below
continue
# Fit elevated_quadratics[j:i] into one cubic
try:
curve, ts = merge_curves(elevated_quadratics, j, i - j)
except ZeroDivisionError:
continue
# Now reconstruct the segments from the fitted curve
reconstructed_iter = splitCubicAtTC(*curve, *ts)
reconstructed = []
# Knot errors
error = 0
for k, reconst in enumerate(reconstructed_iter):
orig = elevated_quadratics[j + k]
err = abs(reconst[3] - orig[3])
error = max(error, err)
if error > tolerance:
break
reconstructed.append(reconst)
if error > tolerance:
# Not feasible
continue
# Interior errors
for k, reconst in enumerate(reconstructed):
orig = elevated_quadratics[j + k]
p0, p1, p2, p3 = tuple(v - u for v, u in zip(reconst, orig))
if not cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance):
error = tolerance + 1
break
if error > tolerance:
# Not feasible
continue
# Save best solution
i_sol_count = j_sol_count + 3
i_sol_error = max(j_sol_error, error)
i_sol = Solution(i_sol_count, i_sol_error, i - j, True)
if i_sol < best_sol:
best_sol = i_sol
if i_sol_count == 3:
# Can't get any better than this
break
sols.append(best_sol)
if i in forced:
start = i
# Reconstruct solution
splits = []
cubic = []
i = len(sols) - 1
while i:
count, is_cubic = sols[i].start_index, sols[i].is_cubic
splits.append(i)
cubic.append(is_cubic)
i -= count
curves = []
j = 0
for i, is_cubic in reversed(list(zip(splits, cubic))):
if is_cubic:
curves.append(merge_curves(elevated_quadratics, j, i - j)[0])
else:
for k in range(j, i):
curves.append(q[k * 2 : k * 2 + 3])
j = i
return curves
def main():
from fontTools.cu2qu.benchmark import generate_curve
from fontTools.cu2qu import curve_to_quadratic
tolerance = 0.05
reconstruct_tolerance = tolerance * 1
curve = generate_curve()
quadratics = curve_to_quadratic(curve, tolerance)
print(
"cu2qu tolerance %g. qu2cu tolerance %g." % (tolerance, reconstruct_tolerance)
)
print("One random cubic turned into %d quadratics." % len(quadratics))
curves = quadratic_to_curves([quadratics], reconstruct_tolerance)
print("Those quadratics turned back into %d cubics. " % len(curves))
print("Original curve:", curve)
print("Reconstructed curve(s):", curves)
if __name__ == "__main__":
main()