Traktor/myenv/Lib/site-packages/fontTools/varLib/varStore.py

728 lines
23 KiB
Python
Raw Permalink Normal View History

2024-05-23 01:57:24 +02:00
from fontTools.misc.roundTools import noRound, otRound
from fontTools.misc.intTools import bit_count
from fontTools.ttLib.tables import otTables as ot
from fontTools.varLib.models import supportScalar
from fontTools.varLib.builder import (
buildVarRegionList,
buildVarStore,
buildVarRegion,
buildVarData,
)
from functools import partial
from collections import defaultdict
from heapq import heappush, heappop
NO_VARIATION_INDEX = ot.NO_VARIATION_INDEX
ot.VarStore.NO_VARIATION_INDEX = NO_VARIATION_INDEX
def _getLocationKey(loc):
return tuple(sorted(loc.items(), key=lambda kv: kv[0]))
class OnlineVarStoreBuilder(object):
def __init__(self, axisTags):
self._axisTags = axisTags
self._regionMap = {}
self._regionList = buildVarRegionList([], axisTags)
self._store = buildVarStore(self._regionList, [])
self._data = None
self._model = None
self._supports = None
self._varDataIndices = {}
self._varDataCaches = {}
self._cache = {}
def setModel(self, model):
self.setSupports(model.supports)
self._model = model
def setSupports(self, supports):
self._model = None
self._supports = list(supports)
if not self._supports[0]:
del self._supports[0] # Drop base master support
self._cache = {}
self._data = None
def finish(self, optimize=True):
self._regionList.RegionCount = len(self._regionList.Region)
self._store.VarDataCount = len(self._store.VarData)
for data in self._store.VarData:
data.ItemCount = len(data.Item)
data.calculateNumShorts(optimize=optimize)
return self._store
def _add_VarData(self):
regionMap = self._regionMap
regionList = self._regionList
regions = self._supports
regionIndices = []
for region in regions:
key = _getLocationKey(region)
idx = regionMap.get(key)
if idx is None:
varRegion = buildVarRegion(region, self._axisTags)
idx = regionMap[key] = len(regionList.Region)
regionList.Region.append(varRegion)
regionIndices.append(idx)
# Check if we have one already...
key = tuple(regionIndices)
varDataIdx = self._varDataIndices.get(key)
if varDataIdx is not None:
self._outer = varDataIdx
self._data = self._store.VarData[varDataIdx]
self._cache = self._varDataCaches[key]
if len(self._data.Item) == 0xFFFF:
# This is full. Need new one.
varDataIdx = None
if varDataIdx is None:
self._data = buildVarData(regionIndices, [], optimize=False)
self._outer = len(self._store.VarData)
self._store.VarData.append(self._data)
self._varDataIndices[key] = self._outer
if key not in self._varDataCaches:
self._varDataCaches[key] = {}
self._cache = self._varDataCaches[key]
def storeMasters(self, master_values, *, round=round):
deltas = self._model.getDeltas(master_values, round=round)
base = deltas.pop(0)
return base, self.storeDeltas(deltas, round=noRound)
def storeDeltas(self, deltas, *, round=round):
deltas = [round(d) for d in deltas]
if len(deltas) == len(self._supports) + 1:
deltas = tuple(deltas[1:])
else:
assert len(deltas) == len(self._supports)
deltas = tuple(deltas)
varIdx = self._cache.get(deltas)
if varIdx is not None:
return varIdx
if not self._data:
self._add_VarData()
inner = len(self._data.Item)
if inner == 0xFFFF:
# Full array. Start new one.
self._add_VarData()
return self.storeDeltas(deltas)
self._data.addItem(deltas, round=noRound)
varIdx = (self._outer << 16) + inner
self._cache[deltas] = varIdx
return varIdx
def VarData_addItem(self, deltas, *, round=round):
deltas = [round(d) for d in deltas]
countUs = self.VarRegionCount
countThem = len(deltas)
if countUs + 1 == countThem:
deltas = list(deltas[1:])
else:
assert countUs == countThem, (countUs, countThem)
deltas = list(deltas)
self.Item.append(deltas)
self.ItemCount = len(self.Item)
ot.VarData.addItem = VarData_addItem
def VarRegion_get_support(self, fvar_axes):
return {
fvar_axes[i].axisTag: (reg.StartCoord, reg.PeakCoord, reg.EndCoord)
for i, reg in enumerate(self.VarRegionAxis)
if reg.PeakCoord != 0
}
ot.VarRegion.get_support = VarRegion_get_support
def VarStore___bool__(self):
return bool(self.VarData)
ot.VarStore.__bool__ = VarStore___bool__
class VarStoreInstancer(object):
def __init__(self, varstore, fvar_axes, location={}):
self.fvar_axes = fvar_axes
assert varstore is None or varstore.Format == 1
self._varData = varstore.VarData if varstore else []
self._regions = varstore.VarRegionList.Region if varstore else []
self.setLocation(location)
def setLocation(self, location):
self.location = dict(location)
self._clearCaches()
def _clearCaches(self):
self._scalars = {}
def _getScalar(self, regionIdx):
scalar = self._scalars.get(regionIdx)
if scalar is None:
support = self._regions[regionIdx].get_support(self.fvar_axes)
scalar = supportScalar(self.location, support)
self._scalars[regionIdx] = scalar
return scalar
@staticmethod
def interpolateFromDeltasAndScalars(deltas, scalars):
delta = 0.0
for d, s in zip(deltas, scalars):
if not s:
continue
delta += d * s
return delta
def __getitem__(self, varidx):
major, minor = varidx >> 16, varidx & 0xFFFF
if varidx == NO_VARIATION_INDEX:
return 0.0
varData = self._varData
scalars = [self._getScalar(ri) for ri in varData[major].VarRegionIndex]
deltas = varData[major].Item[minor]
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def interpolateFromDeltas(self, varDataIndex, deltas):
varData = self._varData
scalars = [self._getScalar(ri) for ri in varData[varDataIndex].VarRegionIndex]
return self.interpolateFromDeltasAndScalars(deltas, scalars)
#
# Optimizations
#
# retainFirstMap - If true, major 0 mappings are retained. Deltas for unused indices are zeroed
# advIdxes - Set of major 0 indices for advance deltas to be listed first. Other major 0 indices follow.
def VarStore_subset_varidxes(
self, varIdxes, optimize=True, retainFirstMap=False, advIdxes=set()
):
# Sort out used varIdxes by major/minor.
used = {}
for varIdx in varIdxes:
if varIdx == NO_VARIATION_INDEX:
continue
major = varIdx >> 16
minor = varIdx & 0xFFFF
d = used.get(major)
if d is None:
d = used[major] = set()
d.add(minor)
del varIdxes
#
# Subset VarData
#
varData = self.VarData
newVarData = []
varDataMap = {NO_VARIATION_INDEX: NO_VARIATION_INDEX}
for major, data in enumerate(varData):
usedMinors = used.get(major)
if usedMinors is None:
continue
newMajor = len(newVarData)
newVarData.append(data)
items = data.Item
newItems = []
if major == 0 and retainFirstMap:
for minor in range(len(items)):
newItems.append(
items[minor] if minor in usedMinors else [0] * len(items[minor])
)
varDataMap[minor] = minor
else:
if major == 0:
minors = sorted(advIdxes) + sorted(usedMinors - advIdxes)
else:
minors = sorted(usedMinors)
for minor in minors:
newMinor = len(newItems)
newItems.append(items[minor])
varDataMap[(major << 16) + minor] = (newMajor << 16) + newMinor
data.Item = newItems
data.ItemCount = len(data.Item)
data.calculateNumShorts(optimize=optimize)
self.VarData = newVarData
self.VarDataCount = len(self.VarData)
self.prune_regions()
return varDataMap
ot.VarStore.subset_varidxes = VarStore_subset_varidxes
def VarStore_prune_regions(self):
"""Remove unused VarRegions."""
#
# Subset VarRegionList
#
# Collect.
usedRegions = set()
for data in self.VarData:
usedRegions.update(data.VarRegionIndex)
# Subset.
regionList = self.VarRegionList
regions = regionList.Region
newRegions = []
regionMap = {}
for i in sorted(usedRegions):
regionMap[i] = len(newRegions)
newRegions.append(regions[i])
regionList.Region = newRegions
regionList.RegionCount = len(regionList.Region)
# Map.
for data in self.VarData:
data.VarRegionIndex = [regionMap[i] for i in data.VarRegionIndex]
ot.VarStore.prune_regions = VarStore_prune_regions
def _visit(self, func):
"""Recurse down from self, if type of an object is ot.Device,
call func() on it. Works on otData-style classes."""
if type(self) == ot.Device:
func(self)
elif isinstance(self, list):
for that in self:
_visit(that, func)
elif hasattr(self, "getConverters") and not hasattr(self, "postRead"):
for conv in self.getConverters():
that = getattr(self, conv.name, None)
if that is not None:
_visit(that, func)
elif isinstance(self, ot.ValueRecord):
for that in self.__dict__.values():
_visit(that, func)
def _Device_recordVarIdx(self, s):
"""Add VarIdx in this Device table (if any) to the set s."""
if self.DeltaFormat == 0x8000:
s.add((self.StartSize << 16) + self.EndSize)
def Object_collect_device_varidxes(self, varidxes):
adder = partial(_Device_recordVarIdx, s=varidxes)
_visit(self, adder)
ot.GDEF.collect_device_varidxes = Object_collect_device_varidxes
ot.GPOS.collect_device_varidxes = Object_collect_device_varidxes
def _Device_mapVarIdx(self, mapping, done):
"""Map VarIdx in this Device table (if any) through mapping."""
if id(self) in done:
return
done.add(id(self))
if self.DeltaFormat == 0x8000:
varIdx = mapping[(self.StartSize << 16) + self.EndSize]
self.StartSize = varIdx >> 16
self.EndSize = varIdx & 0xFFFF
def Object_remap_device_varidxes(self, varidxes_map):
mapper = partial(_Device_mapVarIdx, mapping=varidxes_map, done=set())
_visit(self, mapper)
ot.GDEF.remap_device_varidxes = Object_remap_device_varidxes
ot.GPOS.remap_device_varidxes = Object_remap_device_varidxes
class _Encoding(object):
def __init__(self, chars):
self.chars = chars
self.width = bit_count(chars)
self.columns = self._columns(chars)
self.overhead = self._characteristic_overhead(self.columns)
self.items = set()
def append(self, row):
self.items.add(row)
def extend(self, lst):
self.items.update(lst)
def get_room(self):
"""Maximum number of bytes that can be added to characteristic
while still being beneficial to merge it into another one."""
count = len(self.items)
return max(0, (self.overhead - 1) // count - self.width)
room = property(get_room)
def get_gain(self):
"""Maximum possible byte gain from merging this into another
characteristic."""
count = len(self.items)
return max(0, self.overhead - count)
gain = property(get_gain)
def gain_sort_key(self):
return self.gain, self.chars
def width_sort_key(self):
return self.width, self.chars
@staticmethod
def _characteristic_overhead(columns):
"""Returns overhead in bytes of encoding this characteristic
as a VarData."""
c = 4 + 6 # 4 bytes for LOffset, 6 bytes for VarData header
c += bit_count(columns) * 2
return c
@staticmethod
def _columns(chars):
cols = 0
i = 1
while chars:
if chars & 0b1111:
cols |= i
chars >>= 4
i <<= 1
return cols
def gain_from_merging(self, other_encoding):
combined_chars = other_encoding.chars | self.chars
combined_width = bit_count(combined_chars)
combined_columns = self.columns | other_encoding.columns
combined_overhead = _Encoding._characteristic_overhead(combined_columns)
combined_gain = (
+self.overhead
+ other_encoding.overhead
- combined_overhead
- (combined_width - self.width) * len(self.items)
- (combined_width - other_encoding.width) * len(other_encoding.items)
)
return combined_gain
class _EncodingDict(dict):
def __missing__(self, chars):
r = self[chars] = _Encoding(chars)
return r
def add_row(self, row):
chars = self._row_characteristics(row)
self[chars].append(row)
@staticmethod
def _row_characteristics(row):
"""Returns encoding characteristics for a row."""
longWords = False
chars = 0
i = 1
for v in row:
if v:
chars += i
if not (-128 <= v <= 127):
chars += i * 0b0010
if not (-32768 <= v <= 32767):
longWords = True
break
i <<= 4
if longWords:
# Redo; only allow 2byte/4byte encoding
chars = 0
i = 1
for v in row:
if v:
chars += i * 0b0011
if not (-32768 <= v <= 32767):
chars += i * 0b1100
i <<= 4
return chars
def VarStore_optimize(self, use_NO_VARIATION_INDEX=True, quantization=1):
"""Optimize storage. Returns mapping from old VarIdxes to new ones."""
# Overview:
#
# For each VarData row, we first extend it with zeroes to have
# one column per region in VarRegionList. We then group the
# rows into _Encoding objects, by their "characteristic" bitmap.
# The characteristic bitmap is a binary number representing how
# many bytes each column of the data takes up to encode. Each
# column is encoded in four bits. For example, if a column has
# only values in the range -128..127, it would only have a single
# bit set in the characteristic bitmap for that column. If it has
# values in the range -32768..32767, it would have two bits set.
# The number of ones in the characteristic bitmap is the "width"
# of the encoding.
#
# Each encoding as such has a number of "active" (ie. non-zero)
# columns. The overhead of encoding the characteristic bitmap
# is 10 bytes, plus 2 bytes per active column.
#
# When an encoding is merged into another one, if the characteristic
# of the old encoding is a subset of the new one, then the overhead
# of the old encoding is completely eliminated. However, each row
# now would require more bytes to encode, to the tune of one byte
# per characteristic bit that is active in the new encoding but not
# in the old one. The number of bits that can be added to an encoding
# while still beneficial to merge it into another encoding is called
# the "room" for that encoding.
#
# The "gain" of an encodings is the maximum number of bytes we can
# save by merging it into another encoding. The "gain" of merging
# two encodings is how many bytes we save by doing so.
#
# High-level algorithm:
#
# - Each encoding has a minimal way to encode it. However, because
# of the overhead of encoding the characteristic bitmap, it may
# be beneficial to merge two encodings together, if there is
# gain in doing so. As such, we need to search for the best
# such successive merges.
#
# Algorithm:
#
# - Put all encodings into a "todo" list.
#
# - Sort todo list by decreasing gain (for stability).
#
# - Make a priority-queue of the gain from combining each two
# encodings in the todo list. The priority queue is sorted by
# decreasing gain. Only positive gains are included.
#
# - While priority queue is not empty:
# - Pop the first item from the priority queue,
# - Merge the two encodings it represents,
# - Remove the two encodings from the todo list,
# - Insert positive gains from combining the new encoding with
# all existing todo list items into the priority queue,
# - If a todo list item with the same characteristic bitmap as
# the new encoding exists, remove it from the todo list and
# merge it into the new encoding.
# - Insert the new encoding into the todo list,
#
# - Encode all remaining items in the todo list.
#
# The output is then sorted for stability, in the following way:
# - The VarRegionList of the input is kept intact.
# - All encodings are sorted before the main algorithm, by
# gain_key_sort(), which is a tuple of the following items:
# * The gain of the encoding.
# * The characteristic bitmap of the encoding, with higher-numbered
# columns compared first.
# - The VarData is sorted by width_sort_key(), which is a tuple
# of the following items:
# * The "width" of the encoding.
# * The characteristic bitmap of the encoding, with higher-numbered
# columns compared first.
# - Within each VarData, the items are sorted as vectors of numbers.
#
# Finally, each VarData is optimized to remove the empty columns and
# reorder columns as needed.
# TODO
# Check that no two VarRegions are the same; if they are, fold them.
n = len(self.VarRegionList.Region) # Number of columns
zeroes = [0] * n
front_mapping = {} # Map from old VarIdxes to full row tuples
encodings = _EncodingDict()
# Collect all items into a set of full rows (with lots of zeroes.)
for major, data in enumerate(self.VarData):
regionIndices = data.VarRegionIndex
for minor, item in enumerate(data.Item):
row = list(zeroes)
if quantization == 1:
for regionIdx, v in zip(regionIndices, item):
row[regionIdx] += v
else:
for regionIdx, v in zip(regionIndices, item):
row[regionIdx] += (
round(v / quantization) * quantization
) # TODO https://github.com/fonttools/fonttools/pull/3126#discussion_r1205439785
row = tuple(row)
if use_NO_VARIATION_INDEX and not any(row):
front_mapping[(major << 16) + minor] = None
continue
encodings.add_row(row)
front_mapping[(major << 16) + minor] = row
# Prepare for the main algorithm.
todo = sorted(encodings.values(), key=_Encoding.gain_sort_key)
del encodings
# Repeatedly pick two best encodings to combine, and combine them.
heap = []
for i, encoding in enumerate(todo):
for j in range(i + 1, len(todo)):
other_encoding = todo[j]
combining_gain = encoding.gain_from_merging(other_encoding)
if combining_gain > 0:
heappush(heap, (-combining_gain, i, j))
while heap:
_, i, j = heappop(heap)
if todo[i] is None or todo[j] is None:
continue
encoding, other_encoding = todo[i], todo[j]
todo[i], todo[j] = None, None
# Combine the two encodings
combined_chars = other_encoding.chars | encoding.chars
combined_encoding = _Encoding(combined_chars)
combined_encoding.extend(encoding.items)
combined_encoding.extend(other_encoding.items)
for k, enc in enumerate(todo):
if enc is None:
continue
# In the unlikely event that the same encoding exists already,
# combine it.
if enc.chars == combined_chars:
combined_encoding.extend(enc.items)
todo[k] = None
continue
combining_gain = combined_encoding.gain_from_merging(enc)
if combining_gain > 0:
heappush(heap, (-combining_gain, k, len(todo)))
todo.append(combined_encoding)
encodings = [encoding for encoding in todo if encoding is not None]
# Assemble final store.
back_mapping = {} # Mapping from full rows to new VarIdxes
encodings.sort(key=_Encoding.width_sort_key)
self.VarData = []
for encoding in encodings:
items = sorted(encoding.items)
while items:
major = len(self.VarData)
data = ot.VarData()
self.VarData.append(data)
data.VarRegionIndex = range(n)
data.VarRegionCount = len(data.VarRegionIndex)
# Each major can only encode up to 0xFFFF entries.
data.Item, items = items[:0xFFFF], items[0xFFFF:]
for minor, item in enumerate(data.Item):
back_mapping[item] = (major << 16) + minor
# Compile final mapping.
varidx_map = {NO_VARIATION_INDEX: NO_VARIATION_INDEX}
for k, v in front_mapping.items():
varidx_map[k] = back_mapping[v] if v is not None else NO_VARIATION_INDEX
# Recalculate things and go home.
self.VarRegionList.RegionCount = len(self.VarRegionList.Region)
self.VarDataCount = len(self.VarData)
for data in self.VarData:
data.ItemCount = len(data.Item)
data.optimize()
# Remove unused regions.
self.prune_regions()
return varidx_map
ot.VarStore.optimize = VarStore_optimize
def main(args=None):
"""Optimize a font's GDEF variation store"""
from argparse import ArgumentParser
from fontTools import configLogger
from fontTools.ttLib import TTFont
from fontTools.ttLib.tables.otBase import OTTableWriter
parser = ArgumentParser(prog="varLib.varStore", description=main.__doc__)
parser.add_argument("--quantization", type=int, default=1)
parser.add_argument("fontfile")
parser.add_argument("outfile", nargs="?")
options = parser.parse_args(args)
# TODO: allow user to configure logging via command-line options
configLogger(level="INFO")
quantization = options.quantization
fontfile = options.fontfile
outfile = options.outfile
font = TTFont(fontfile)
gdef = font["GDEF"]
store = gdef.table.VarStore
writer = OTTableWriter()
store.compile(writer, font)
size = len(writer.getAllData())
print("Before: %7d bytes" % size)
varidx_map = store.optimize(quantization=quantization)
writer = OTTableWriter()
store.compile(writer, font)
size = len(writer.getAllData())
print("After: %7d bytes" % size)
if outfile is not None:
gdef.table.remap_device_varidxes(varidx_map)
if "GPOS" in font:
font["GPOS"].table.remap_device_varidxes(varidx_map)
font.save(outfile)
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
sys.exit(main())
import doctest
sys.exit(doctest.testmod().failed)