Traktor/myenv/Lib/site-packages/sklearn/tree/_utils.pyx

467 lines
16 KiB
Cython
Raw Permalink Normal View History

2024-05-23 01:57:24 +02:00
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Arnaud Joly <arnaud.v.joly@gmail.com>
# Jacob Schreiber <jmschreiber91@gmail.com>
# Nelson Liu <nelson@nelsonliu.me>
#
#
# License: BSD 3 clause
from libc.stdlib cimport free
from libc.stdlib cimport realloc
from libc.math cimport log as ln
from libc.math cimport isnan
import numpy as np
cimport numpy as cnp
cnp.import_array()
from ..utils._random cimport our_rand_r
# =============================================================================
# Helper functions
# =============================================================================
cdef int safe_realloc(realloc_ptr* p, size_t nelems) except -1 nogil:
# sizeof(realloc_ptr[0]) would be more like idiomatic C, but causes Cython
# 0.20.1 to crash.
cdef size_t nbytes = nelems * sizeof(p[0][0])
if nbytes / sizeof(p[0][0]) != nelems:
# Overflow in the multiplication
raise MemoryError(f"could not allocate ({nelems} * {sizeof(p[0][0])}) bytes")
cdef realloc_ptr tmp = <realloc_ptr>realloc(p[0], nbytes)
if tmp == NULL:
raise MemoryError(f"could not allocate {nbytes} bytes")
p[0] = tmp
return 0
def _realloc_test():
# Helper for tests. Tries to allocate <size_t>(-1) / 2 * sizeof(size_t)
# bytes, which will always overflow.
cdef intp_t* p = NULL
safe_realloc(&p, <size_t>(-1) / 2)
if p != NULL:
free(p)
assert False
cdef inline cnp.ndarray sizet_ptr_to_ndarray(intp_t* data, intp_t size):
"""Return copied data as 1D numpy array of intp's."""
cdef cnp.npy_intp shape[1]
shape[0] = <cnp.npy_intp> size
return cnp.PyArray_SimpleNewFromData(1, shape, cnp.NPY_INTP, data).copy()
cdef inline intp_t rand_int(intp_t low, intp_t high,
uint32_t* random_state) noexcept nogil:
"""Generate a random integer in [low; end)."""
return low + our_rand_r(random_state) % (high - low)
cdef inline float64_t rand_uniform(float64_t low, float64_t high,
uint32_t* random_state) noexcept nogil:
"""Generate a random float64_t in [low; high)."""
return ((high - low) * <float64_t> our_rand_r(random_state) /
<float64_t> RAND_R_MAX) + low
cdef inline float64_t log(float64_t x) noexcept nogil:
return ln(x) / ln(2.0)
# =============================================================================
# WeightedPQueue data structure
# =============================================================================
cdef class WeightedPQueue:
"""A priority queue class, always sorted in increasing order.
Attributes
----------
capacity : intp_t
The capacity of the priority queue.
array_ptr : intp_t
The water mark of the priority queue; the priority queue grows from
left to right in the array ``array_``. ``array_ptr`` is always
less than ``capacity``.
array_ : WeightedPQueueRecord*
The array of priority queue records. The minimum element is on the
left at index 0, and the maximum element is on the right at index
``array_ptr-1``.
"""
def __cinit__(self, intp_t capacity):
self.capacity = capacity
self.array_ptr = 0
safe_realloc(&self.array_, capacity)
def __dealloc__(self):
free(self.array_)
cdef int reset(self) except -1 nogil:
"""Reset the WeightedPQueue to its state at construction
Return -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
self.array_ptr = 0
# Since safe_realloc can raise MemoryError, use `except -1`
safe_realloc(&self.array_, self.capacity)
return 0
cdef bint is_empty(self) noexcept nogil:
return self.array_ptr <= 0
cdef intp_t size(self) noexcept nogil:
return self.array_ptr
cdef int push(self, float64_t data, float64_t weight) except -1 nogil:
"""Push record on the array.
Return -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
cdef intp_t array_ptr = self.array_ptr
cdef WeightedPQueueRecord* array = NULL
cdef intp_t i
# Resize if capacity not sufficient
if array_ptr >= self.capacity:
self.capacity *= 2
# Since safe_realloc can raise MemoryError, use `except -1`
safe_realloc(&self.array_, self.capacity)
# Put element as last element of array
array = self.array_
array[array_ptr].data = data
array[array_ptr].weight = weight
# bubble last element up according until it is sorted
# in ascending order
i = array_ptr
while(i != 0 and array[i].data < array[i-1].data):
array[i], array[i-1] = array[i-1], array[i]
i -= 1
# Increase element count
self.array_ptr = array_ptr + 1
return 0
cdef int remove(self, float64_t data, float64_t weight) noexcept nogil:
"""Remove a specific value/weight record from the array.
Returns 0 if successful, -1 if record not found."""
cdef intp_t array_ptr = self.array_ptr
cdef WeightedPQueueRecord* array = self.array_
cdef intp_t idx_to_remove = -1
cdef intp_t i
if array_ptr <= 0:
return -1
# find element to remove
for i in range(array_ptr):
if array[i].data == data and array[i].weight == weight:
idx_to_remove = i
break
if idx_to_remove == -1:
return -1
# shift the elements after the removed element
# to the left.
for i in range(idx_to_remove, array_ptr-1):
array[i] = array[i+1]
self.array_ptr = array_ptr - 1
return 0
cdef int pop(self, float64_t* data, float64_t* weight) noexcept nogil:
"""Remove the top (minimum) element from array.
Returns 0 if successful, -1 if nothing to remove."""
cdef intp_t array_ptr = self.array_ptr
cdef WeightedPQueueRecord* array = self.array_
cdef intp_t i
if array_ptr <= 0:
return -1
data[0] = array[0].data
weight[0] = array[0].weight
# shift the elements after the removed element
# to the left.
for i in range(0, array_ptr-1):
array[i] = array[i+1]
self.array_ptr = array_ptr - 1
return 0
cdef int peek(self, float64_t* data, float64_t* weight) noexcept nogil:
"""Write the top element from array to a pointer.
Returns 0 if successful, -1 if nothing to write."""
cdef WeightedPQueueRecord* array = self.array_
if self.array_ptr <= 0:
return -1
# Take first value
data[0] = array[0].data
weight[0] = array[0].weight
return 0
cdef float64_t get_weight_from_index(self, intp_t index) noexcept nogil:
"""Given an index between [0,self.current_capacity], access
the appropriate heap and return the requested weight"""
cdef WeightedPQueueRecord* array = self.array_
# get weight at index
return array[index].weight
cdef float64_t get_value_from_index(self, intp_t index) noexcept nogil:
"""Given an index between [0,self.current_capacity], access
the appropriate heap and return the requested value"""
cdef WeightedPQueueRecord* array = self.array_
# get value at index
return array[index].data
# =============================================================================
# WeightedMedianCalculator data structure
# =============================================================================
cdef class WeightedMedianCalculator:
"""A class to handle calculation of the weighted median from streams of
data. To do so, it maintains a parameter ``k`` such that the sum of the
weights in the range [0,k) is greater than or equal to half of the total
weight. By minimizing the value of ``k`` that fulfills this constraint,
calculating the median is done by either taking the value of the sample
at index ``k-1`` of ``samples`` (samples[k-1].data) or the average of
the samples at index ``k-1`` and ``k`` of ``samples``
((samples[k-1] + samples[k]) / 2).
Attributes
----------
initial_capacity : intp_t
The initial capacity of the WeightedMedianCalculator.
samples : WeightedPQueue
Holds the samples (consisting of values and their weights) used in the
weighted median calculation.
total_weight : float64_t
The sum of the weights of items in ``samples``. Represents the total
weight of all samples used in the median calculation.
k : intp_t
Index used to calculate the median.
sum_w_0_k : float64_t
The sum of the weights from samples[0:k]. Used in the weighted
median calculation; minimizing the value of ``k`` such that
``sum_w_0_k`` >= ``total_weight / 2`` provides a mechanism for
calculating the median in constant time.
"""
def __cinit__(self, intp_t initial_capacity):
self.initial_capacity = initial_capacity
self.samples = WeightedPQueue(initial_capacity)
self.total_weight = 0
self.k = 0
self.sum_w_0_k = 0
cdef intp_t size(self) noexcept nogil:
"""Return the number of samples in the
WeightedMedianCalculator"""
return self.samples.size()
cdef int reset(self) except -1 nogil:
"""Reset the WeightedMedianCalculator to its state at construction
Return -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
# samples.reset (WeightedPQueue.reset) uses safe_realloc, hence
# except -1
self.samples.reset()
self.total_weight = 0
self.k = 0
self.sum_w_0_k = 0
return 0
cdef int push(self, float64_t data, float64_t weight) except -1 nogil:
"""Push a value and its associated weight to the WeightedMedianCalculator
Return -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
cdef int return_value
cdef float64_t original_median = 0.0
if self.size() != 0:
original_median = self.get_median()
# samples.push (WeightedPQueue.push) uses safe_realloc, hence except -1
return_value = self.samples.push(data, weight)
self.update_median_parameters_post_push(data, weight,
original_median)
return return_value
cdef int update_median_parameters_post_push(
self, float64_t data, float64_t weight,
float64_t original_median) noexcept nogil:
"""Update the parameters used in the median calculation,
namely `k` and `sum_w_0_k` after an insertion"""
# trivial case of one element.
if self.size() == 1:
self.k = 1
self.total_weight = weight
self.sum_w_0_k = self.total_weight
return 0
# get the original weighted median
self.total_weight += weight
if data < original_median:
# inserting below the median, so increment k and
# then update self.sum_w_0_k accordingly by adding
# the weight that was added.
self.k += 1
# update sum_w_0_k by adding the weight added
self.sum_w_0_k += weight
# minimize k such that sum(W[0:k]) >= total_weight / 2
# minimum value of k is 1
while(self.k > 1 and ((self.sum_w_0_k -
self.samples.get_weight_from_index(self.k-1))
>= self.total_weight / 2.0)):
self.k -= 1
self.sum_w_0_k -= self.samples.get_weight_from_index(self.k)
return 0
if data >= original_median:
# inserting above or at the median
# minimize k such that sum(W[0:k]) >= total_weight / 2
while(self.k < self.samples.size() and
(self.sum_w_0_k < self.total_weight / 2.0)):
self.k += 1
self.sum_w_0_k += self.samples.get_weight_from_index(self.k-1)
return 0
cdef int remove(self, float64_t data, float64_t weight) noexcept nogil:
"""Remove a value from the MedianHeap, removing it
from consideration in the median calculation
"""
cdef int return_value
cdef float64_t original_median = 0.0
if self.size() != 0:
original_median = self.get_median()
return_value = self.samples.remove(data, weight)
self.update_median_parameters_post_remove(data, weight,
original_median)
return return_value
cdef int pop(self, float64_t* data, float64_t* weight) noexcept nogil:
"""Pop a value from the MedianHeap, starting from the
left and moving to the right.
"""
cdef int return_value
cdef float64_t original_median = 0.0
if self.size() != 0:
original_median = self.get_median()
# no elements to pop
if self.samples.size() == 0:
return -1
return_value = self.samples.pop(data, weight)
self.update_median_parameters_post_remove(data[0],
weight[0],
original_median)
return return_value
cdef int update_median_parameters_post_remove(
self, float64_t data, float64_t weight,
float64_t original_median) noexcept nogil:
"""Update the parameters used in the median calculation,
namely `k` and `sum_w_0_k` after a removal"""
# reset parameters because it there are no elements
if self.samples.size() == 0:
self.k = 0
self.total_weight = 0
self.sum_w_0_k = 0
return 0
# trivial case of one element.
if self.samples.size() == 1:
self.k = 1
self.total_weight -= weight
self.sum_w_0_k = self.total_weight
return 0
# get the current weighted median
self.total_weight -= weight
if data < original_median:
# removing below the median, so decrement k and
# then update self.sum_w_0_k accordingly by subtracting
# the removed weight
self.k -= 1
# update sum_w_0_k by removing the weight at index k
self.sum_w_0_k -= weight
# minimize k such that sum(W[0:k]) >= total_weight / 2
# by incrementing k and updating sum_w_0_k accordingly
# until the condition is met.
while(self.k < self.samples.size() and
(self.sum_w_0_k < self.total_weight / 2.0)):
self.k += 1
self.sum_w_0_k += self.samples.get_weight_from_index(self.k-1)
return 0
if data >= original_median:
# removing above the median
# minimize k such that sum(W[0:k]) >= total_weight / 2
while(self.k > 1 and ((self.sum_w_0_k -
self.samples.get_weight_from_index(self.k-1))
>= self.total_weight / 2.0)):
self.k -= 1
self.sum_w_0_k -= self.samples.get_weight_from_index(self.k)
return 0
cdef float64_t get_median(self) noexcept nogil:
"""Write the median to a pointer, taking into account
sample weights."""
if self.sum_w_0_k == (self.total_weight / 2.0):
# split median
return (self.samples.get_value_from_index(self.k) +
self.samples.get_value_from_index(self.k-1)) / 2.0
if self.sum_w_0_k > (self.total_weight / 2.0):
# whole median
return self.samples.get_value_from_index(self.k-1)
def _any_isnan_axis0(const float32_t[:, :] X):
"""Same as np.any(np.isnan(X), axis=0)"""
cdef:
intp_t i, j
intp_t n_samples = X.shape[0]
intp_t n_features = X.shape[1]
unsigned char[::1] isnan_out = np.zeros(X.shape[1], dtype=np.bool_)
with nogil:
for i in range(n_samples):
for j in range(n_features):
if isnan_out[j]:
continue
if isnan(X[i, j]):
isnan_out[j] = True
break
return np.asarray(isnan_out)