Traktor/myenv/Lib/site-packages/sklearn/utils/discovery.py

266 lines
8.9 KiB
Python
Raw Permalink Normal View History

2024-05-23 01:57:24 +02:00
"""
The :mod:`sklearn.utils.discovery` module includes utilities to discover
objects (i.e. estimators, displays, functions) from the `sklearn` package.
"""
import inspect
import pkgutil
from importlib import import_module
from operator import itemgetter
from pathlib import Path
_MODULE_TO_IGNORE = {
"tests",
"externals",
"setup",
"conftest",
"experimental",
"estimator_checks",
}
def all_estimators(type_filter=None):
"""Get a list of all estimators from `sklearn`.
This function crawls the module and gets all classes that inherit
from BaseEstimator. Classes that are defined in test-modules are not
included.
Parameters
----------
type_filter : {"classifier", "regressor", "cluster", "transformer"} \
or list of such str, default=None
Which kind of estimators should be returned. If None, no filter is
applied and all estimators are returned. Possible values are
'classifier', 'regressor', 'cluster' and 'transformer' to get
estimators only of these specific types, or a list of these to
get the estimators that fit at least one of the types.
Returns
-------
estimators : list of tuples
List of (name, class), where ``name`` is the class name as string
and ``class`` is the actual type of the class.
Examples
--------
>>> from sklearn.utils.discovery import all_estimators
>>> estimators = all_estimators()
>>> type(estimators)
<class 'list'>
>>> type(estimators[0])
<class 'tuple'>
>>> estimators[:2]
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
('AdaBoostClassifier',
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]
>>> classifiers = all_estimators(type_filter="classifier")
>>> classifiers[:2]
[('AdaBoostClassifier',
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>),
('BaggingClassifier', <class 'sklearn.ensemble._bagging.BaggingClassifier'>)]
>>> regressors = all_estimators(type_filter="regressor")
>>> regressors[:2]
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
('AdaBoostRegressor',
<class 'sklearn.ensemble._weight_boosting.AdaBoostRegressor'>)]
>>> both = all_estimators(type_filter=["classifier", "regressor"])
>>> both[:2]
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
('AdaBoostClassifier',
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]
"""
# lazy import to avoid circular imports from sklearn.base
from ..base import (
BaseEstimator,
ClassifierMixin,
ClusterMixin,
RegressorMixin,
TransformerMixin,
)
from ._testing import ignore_warnings
from .fixes import _IS_PYPY
def is_abstract(c):
if not (hasattr(c, "__abstractmethods__")):
return False
if not len(c.__abstractmethods__):
return False
return True
all_classes = []
root = str(Path(__file__).parent.parent) # sklearn package
# Ignore deprecation warnings triggered at import time and from walking
# packages
with ignore_warnings(category=FutureWarning):
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
module_parts = module_name.split(".")
if (
any(part in _MODULE_TO_IGNORE for part in module_parts)
or "._" in module_name
):
continue
module = import_module(module_name)
classes = inspect.getmembers(module, inspect.isclass)
classes = [
(name, est_cls) for name, est_cls in classes if not name.startswith("_")
]
# TODO: Remove when FeatureHasher is implemented in PYPY
# Skips FeatureHasher for PYPY
if _IS_PYPY and "feature_extraction" in module_name:
classes = [
(name, est_cls)
for name, est_cls in classes
if name == "FeatureHasher"
]
all_classes.extend(classes)
all_classes = set(all_classes)
estimators = [
c
for c in all_classes
if (issubclass(c[1], BaseEstimator) and c[0] != "BaseEstimator")
]
# get rid of abstract base classes
estimators = [c for c in estimators if not is_abstract(c[1])]
if type_filter is not None:
if not isinstance(type_filter, list):
type_filter = [type_filter]
else:
type_filter = list(type_filter) # copy
filtered_estimators = []
filters = {
"classifier": ClassifierMixin,
"regressor": RegressorMixin,
"transformer": TransformerMixin,
"cluster": ClusterMixin,
}
for name, mixin in filters.items():
if name in type_filter:
type_filter.remove(name)
filtered_estimators.extend(
[est for est in estimators if issubclass(est[1], mixin)]
)
estimators = filtered_estimators
if type_filter:
raise ValueError(
"Parameter type_filter must be 'classifier', "
"'regressor', 'transformer', 'cluster' or "
"None, got"
f" {repr(type_filter)}."
)
# drop duplicates, sort for reproducibility
# itemgetter is used to ensure the sort does not extend to the 2nd item of
# the tuple
return sorted(set(estimators), key=itemgetter(0))
def all_displays():
"""Get a list of all displays from `sklearn`.
Returns
-------
displays : list of tuples
List of (name, class), where ``name`` is the display class name as
string and ``class`` is the actual type of the class.
Examples
--------
>>> from sklearn.utils.discovery import all_displays
>>> displays = all_displays()
>>> displays[0]
('CalibrationDisplay', <class 'sklearn.calibration.CalibrationDisplay'>)
"""
# lazy import to avoid circular imports from sklearn.base
from ._testing import ignore_warnings
all_classes = []
root = str(Path(__file__).parent.parent) # sklearn package
# Ignore deprecation warnings triggered at import time and from walking
# packages
with ignore_warnings(category=FutureWarning):
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
module_parts = module_name.split(".")
if (
any(part in _MODULE_TO_IGNORE for part in module_parts)
or "._" in module_name
):
continue
module = import_module(module_name)
classes = inspect.getmembers(module, inspect.isclass)
classes = [
(name, display_class)
for name, display_class in classes
if not name.startswith("_") and name.endswith("Display")
]
all_classes.extend(classes)
return sorted(set(all_classes), key=itemgetter(0))
def _is_checked_function(item):
if not inspect.isfunction(item):
return False
if item.__name__.startswith("_"):
return False
mod = item.__module__
if not mod.startswith("sklearn.") or mod.endswith("estimator_checks"):
return False
return True
def all_functions():
"""Get a list of all functions from `sklearn`.
Returns
-------
functions : list of tuples
List of (name, function), where ``name`` is the function name as
string and ``function`` is the actual function.
Examples
--------
>>> from sklearn.utils.discovery import all_functions
>>> functions = all_functions()
>>> name, function = functions[0]
>>> name
'accuracy_score'
"""
# lazy import to avoid circular imports from sklearn.base
from ._testing import ignore_warnings
all_functions = []
root = str(Path(__file__).parent.parent) # sklearn package
# Ignore deprecation warnings triggered at import time and from walking
# packages
with ignore_warnings(category=FutureWarning):
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
module_parts = module_name.split(".")
if (
any(part in _MODULE_TO_IGNORE for part in module_parts)
or "._" in module_name
):
continue
module = import_module(module_name)
functions = inspect.getmembers(module, _is_checked_function)
functions = [
(func.__name__, func)
for name, func in functions
if not name.startswith("_")
]
all_functions.extend(functions)
# drop duplicates, sort for reproducibility
# itemgetter is used to ensure the sort does not extend to the 2nd item of
# the tuple
return sorted(set(all_functions), key=itemgetter(0))