Traktor/myenv/Lib/site-packages/sympy/solvers/polysys.py

441 lines
13 KiB
Python
Raw Permalink Normal View History

2024-05-23 01:57:24 +02:00
"""Solvers of systems of polynomial equations. """
import itertools
from sympy.core import S
from sympy.core.sorting import default_sort_key
from sympy.polys import Poly, groebner, roots
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.polys.polyerrors import (ComputationFailed,
PolificationFailed, CoercionFailed)
from sympy.simplify import rcollect
from sympy.utilities import postfixes
from sympy.utilities.misc import filldedent
class SolveFailed(Exception):
"""Raised when solver's conditions were not met. """
def solve_poly_system(seq, *gens, strict=False, **args):
"""
Return a list of solutions for the system of polynomial equations
or else None.
Parameters
==========
seq: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in seq for which we want the
solutions
strict: a boolean (default is False)
if strict is True, NotImplementedError will be raised if
the solution is known to be incomplete (which can occur if
not all solutions are expressible in radicals)
args: Keyword arguments
Special options for solving the equations.
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
Examples
========
>>> from sympy import solve_poly_system
>>> from sympy.abc import x, y
>>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
>>> solve_poly_system([x**5 - x + y**3, y**2 - 1], x, y, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('solve_poly_system', len(seq), exc)
if len(polys) == len(opt.gens) == 2:
f, g = polys
if all(i <= 2 for i in f.degree_list() + g.degree_list()):
try:
return solve_biquadratic(f, g, opt)
except SolveFailed:
pass
return solve_generic(polys, opt, strict=strict)
def solve_biquadratic(f, g, opt):
"""Solve a system of two bivariate quadratic polynomial equations.
Parameters
==========
f: a single Expr or Poly
First equation
g: a single Expr or Poly
Second Equation
opt: an Options object
For specifying keyword arguments and generators
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
Examples
========
>>> from sympy import Options, Poly
>>> from sympy.abc import x, y
>>> from sympy.solvers.polysys import solve_biquadratic
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
>>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(1/3, 3), (41/27, 11/9)]
>>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
>>> b = Poly(-y + x - 4, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
sqrt(29)/2)]
"""
G = groebner([f, g])
if len(G) == 1 and G[0].is_ground:
return None
if len(G) != 2:
raise SolveFailed
x, y = opt.gens
p, q = G
if not p.gcd(q).is_ground:
# not 0-dimensional
raise SolveFailed
p = Poly(p, x, expand=False)
p_roots = [rcollect(expr, y) for expr in roots(p).keys()]
q = q.ltrim(-1)
q_roots = list(roots(q).keys())
solutions = [(p_root.subs(y, q_root), q_root) for q_root, p_root in
itertools.product(q_roots, p_roots)]
return sorted(solutions, key=default_sort_key)
def solve_generic(polys, opt, strict=False):
"""
Solve a generic system of polynomial equations.
Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
set F = { f_1, f_2, ..., f_n } of polynomial equations, using
Groebner basis approach. For now only zero-dimensional systems
are supported, which means F can have at most a finite number
of solutions. If the basis contains only the ground, None is
returned.
The algorithm works by the fact that, supposing G is the basis
of F with respect to an elimination order (here lexicographic
order is used), G and F generate the same ideal, they have the
same set of solutions. By the elimination property, if G is a
reduced, zero-dimensional Groebner basis, then there exists an
univariate polynomial in G (in its last variable). This can be
solved by computing its roots. Substituting all computed roots
for the last (eliminated) variable in other elements of G, new
polynomial system is generated. Applying the above procedure
recursively, a finite number of solutions can be found.
The ability of finding all solutions by this procedure depends
on the root finding algorithms. If no solutions were found, it
means only that roots() failed, but the system is solvable. To
overcome this difficulty use numerical algorithms instead.
Parameters
==========
polys: a list/tuple/set
Listing all the polynomial equations that are needed to be solved
opt: an Options object
For specifying keyword arguments and generators
strict: a boolean
If strict is True, NotImplementedError will be raised if the solution
is known to be incomplete
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
References
==========
.. [Buchberger01] B. Buchberger, Groebner Bases: A Short
Introduction for Systems Theorists, In: R. Moreno-Diaz,
B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
February, 2001
.. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
and Algorithms, Springer, Second Edition, 1997, pp. 112
Raises
========
NotImplementedError
If the system is not zero-dimensional (does not have a finite
number of solutions)
UnsolvableFactorError
If ``strict`` is True and not all solution components are
expressible in radicals
Examples
========
>>> from sympy import Poly, Options
>>> from sympy.solvers.polysys import solve_generic
>>> from sympy.abc import x, y
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(x - y + 5, x, y, domain='ZZ')
>>> b = Poly(x + y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(-1, 4)]
>>> a = Poly(x - 2*y + 5, x, y, domain='ZZ')
>>> b = Poly(2*x - y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(11/3, 13/3)]
>>> a = Poly(x**2 + y, x, y, domain='ZZ')
>>> b = Poly(x + y*4, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(0, 0), (1/4, -1/16)]
>>> a = Poly(x**5 - x + y**3, x, y, domain='ZZ')
>>> b = Poly(y**2 - 1, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
def _is_univariate(f):
"""Returns True if 'f' is univariate in its last variable. """
for monom in f.monoms():
if any(monom[:-1]):
return False
return True
def _subs_root(f, gen, zero):
"""Replace generator with a root so that the result is nice. """
p = f.as_expr({gen: zero})
if f.degree(gen) >= 2:
p = p.expand(deep=False)
return p
def _solve_reduced_system(system, gens, entry=False):
"""Recursively solves reduced polynomial systems. """
if len(system) == len(gens) == 1:
# the below line will produce UnsolvableFactorError if
# strict=True and the solution from `roots` is incomplete
zeros = list(roots(system[0], gens[-1], strict=strict).keys())
return [(zero,) for zero in zeros]
basis = groebner(system, gens, polys=True)
if len(basis) == 1 and basis[0].is_ground:
if not entry:
return []
else:
return None
univariate = list(filter(_is_univariate, basis))
if len(basis) < len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
if len(univariate) == 1:
f = univariate.pop()
else:
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
gens = f.gens
gen = gens[-1]
# the below line will produce UnsolvableFactorError if
# strict=True and the solution from `roots` is incomplete
zeros = list(roots(f.ltrim(gen), strict=strict).keys())
if not zeros:
return []
if len(basis) == 1:
return [(zero,) for zero in zeros]
solutions = []
for zero in zeros:
new_system = []
new_gens = gens[:-1]
for b in basis[:-1]:
eq = _subs_root(b, gen, zero)
if eq is not S.Zero:
new_system.append(eq)
for solution in _solve_reduced_system(new_system, new_gens):
solutions.append(solution + (zero,))
if solutions and len(solutions[0]) != len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
return solutions
try:
result = _solve_reduced_system(polys, opt.gens, entry=True)
except CoercionFailed:
raise NotImplementedError
if result is not None:
return sorted(result, key=default_sort_key)
def solve_triangulated(polys, *gens, **args):
"""
Solve a polynomial system using Gianni-Kalkbrenner algorithm.
The algorithm proceeds by computing one Groebner basis in the ground
domain and then by iteratively computing polynomial factorizations in
appropriately constructed algebraic extensions of the ground domain.
Parameters
==========
polys: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in polys for which we want the
solutions
args: Keyword arguments
Special options for solving the equations
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in polys
Examples
========
>>> from sympy import solve_triangulated
>>> from sympy.abc import x, y, z
>>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]
>>> solve_triangulated(F, x, y, z)
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
References
==========
1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989
"""
G = groebner(polys, gens, polys=True)
G = list(reversed(G))
domain = args.get('domain')
if domain is not None:
for i, g in enumerate(G):
G[i] = g.set_domain(domain)
f, G = G[0].ltrim(-1), G[1:]
dom = f.get_domain()
zeros = f.ground_roots()
solutions = set()
for zero in zeros:
solutions.add(((zero,), dom))
var_seq = reversed(gens[:-1])
vars_seq = postfixes(gens[1:])
for var, vars in zip(var_seq, vars_seq):
_solutions = set()
for values, dom in solutions:
H, mapping = [], list(zip(vars, values))
for g in G:
_vars = (var,) + vars
if g.has_only_gens(*_vars) and g.degree(var) != 0:
h = g.ltrim(var).eval(dict(mapping))
if g.degree(var) == h.degree():
H.append(h)
p = min(H, key=lambda h: h.degree())
zeros = p.ground_roots()
for zero in zeros:
if not zero.is_Rational:
dom_zero = dom.algebraic_field(zero)
else:
dom_zero = dom
_solutions.add(((zero,) + values, dom_zero))
solutions = _solutions
solutions = list(solutions)
for i, (solution, _) in enumerate(solutions):
solutions[i] = solution
return sorted(solutions, key=default_sort_key)